An undescribed pyrrole acid,1-(4′-methoxy-4′-oxobutyl)-1 H-pyrrole-2,5-dicarboxylic acid(1)and one known pyr-role acid(2)were isolated from the fruits of Phyllanthus emblica.The structures of these compounds were el...An undescribed pyrrole acid,1-(4′-methoxy-4′-oxobutyl)-1 H-pyrrole-2,5-dicarboxylic acid(1)and one known pyr-role acid(2)were isolated from the fruits of Phyllanthus emblica.The structures of these compounds were elucidated via the comprehensive analyses of IR,HRESIMS,1D and 2D spectroscopic data.A series of biological assays revealed that compounds 1 and 2 could inhibit LPS-induced over-production of nitric oxide(NO),interleukin-6(IL-6),monocyte chemotactic protein 1(MCP-1)and tumor necrosis factor-α(TNF-α)by reducing the phosphorylation of extracellular regulated protein kinases(ERK)and c-Jun N-terminal kinases(JNK)in RAW 264.7 cells.Additionally,compounds 1 and 2 were found to reduce lipid deposition and increase the mRNA expression of ATP-binding cassette transporter A1 in oxidized low-density lipoprotein-treated RAW264.7 macrophages.展开更多
基金Scientific and technological innovation project of China Academy of Chinese Medical Sciences(CI2021A04409,CI2021A04404,CI2021A04405)the fundamental research funds for the central public welfare research institutes(No.ZZ13-YQ-061,ZXKT22012,ZXKT22039).
文摘An undescribed pyrrole acid,1-(4′-methoxy-4′-oxobutyl)-1 H-pyrrole-2,5-dicarboxylic acid(1)and one known pyr-role acid(2)were isolated from the fruits of Phyllanthus emblica.The structures of these compounds were elucidated via the comprehensive analyses of IR,HRESIMS,1D and 2D spectroscopic data.A series of biological assays revealed that compounds 1 and 2 could inhibit LPS-induced over-production of nitric oxide(NO),interleukin-6(IL-6),monocyte chemotactic protein 1(MCP-1)and tumor necrosis factor-α(TNF-α)by reducing the phosphorylation of extracellular regulated protein kinases(ERK)and c-Jun N-terminal kinases(JNK)in RAW 264.7 cells.Additionally,compounds 1 and 2 were found to reduce lipid deposition and increase the mRNA expression of ATP-binding cassette transporter A1 in oxidized low-density lipoprotein-treated RAW264.7 macrophages.