Pinusdensata is one of the main constructive species for coniferous forests in southeast Tibet. P. densata forests are important water conservation forests in the drainage basins of the middle and lower reaches of Yal...Pinusdensata is one of the main constructive species for coniferous forests in southeast Tibet. P. densata forests are important water conservation forests in the drainage basins of the middle and lower reaches of Yalu Tsangpo River, Nyang River and Parlung Zangbo River. In this study, with P. densata forest distributed in southeast Tibet as research object, the seed rain, soil seed bank, seed germination and natural regeneration of P. densata were monitored and ana- lyzed by field investigation, located monitoring and indoor experimental analysis. The results showed that the average intensity of the seed rain of P. densata was 249.30±78.42 seeds/m2, in which the intensity of full seeds was 168.09±56.36 seeds/m2, the intensity of seeds damaged by worms was 41.11±20.25 seeds/m2, and the intensity of empty seeds was 40.10±21.04 seeds/m2. The intensity of the seed rain exhibited a single-peak trend of increasing at first and decreasing then over time. The spatial distribution patterns in the whole seed falling process and at different seed falling time all exhibited clumping distribution, and within in certain range, with the distance from the seed tree increasing, the diffusion intensity of the seed rain was weakened, exhibiting approximately normal distribution. In average density of P. densata seeds in the soil seed bank of P. densata was 231 seeds/m2, in which 62.77% of seeds were distributed in the litter layer, and 37.23% of seeds were distributed in the soil layer, and about 8% of seeds were lost during the pro- cess from seed rain to soil seed bank. Field sowing observation showed that the accumulated germination rate curve of P. densata fitted with Logistics equation y= 91.404/(1+e66194.449). The height structure, basal diameter structure and age structure of seedlings and young trees of P. densata were all of reverse "J" type, indicating good natural regeneration of P. densata. This study would provide a science basis for protection and resource management of P. densata, and further enrich the eval- uation content of national ecological safety curtain of the Tibet plateau.展开更多
Southwest China is one of three major forest regions in China and plays an important role in carbon sequestration.Accurate estimations of changes in aboveground biomass are critical for understanding forest carbon cyc...Southwest China is one of three major forest regions in China and plays an important role in carbon sequestration.Accurate estimations of changes in aboveground biomass are critical for understanding forest carbon cycling and promoting climate change mitigation.Southwest China is characterized by complex topographic features and forest canopy structures,complicating methods for mapping aboveground biomass and its dynamics.The integration of continuous Landsat images and national forest inventory data provides an alternative approach to develop a long-term monitoring program of forest aboveground biomass dynamics.This study explores the development of a methodological framework using historical national forest inventory plot data and Landsat TM timeseries images.This method was formulated by comparing two parametric methods:Linear Regression for Multiple Independent Variables(MLR),and Partial Least Square Regression(PLSR);and two nonparametric methods:Random Forest(RF)and Gradient Boost Regression Tree(GBRT)based on the state of forest aboveground biomass and change models.The methodological framework mapped Pinus densata aboveground biomass and its changes over time in Shangri-la,Yunnan,China.Landsat images and national forest inventory data were acquired for 1987,1992,1997,2002 and 2007.The results show that:(1)correlation and homogeneity texture measures were able to characterize forest canopy structures,aboveground biomass and its dynamics;(2)GBRT and RF predicted Pinus densata aboveground biomass and its changes better than PLSR and MLR;(3)GBRT was the most reliable approach in the estimation of aboveground biomass and its changes;and,(4)the aboveground biomass change models showed a promising improvement of prediction accuracy.This study indicates that the combination of GBRT state and change models developed using temporal Landsat and national forest inventory data provides the potential for developing a methodological framework for the long-term mapping and monitoring program of forest aboveground biomass and its changes in Southwest China.展开更多
Electrical impedance (El) and phase angle (PHI) parameters in AC impedance spectroscopy are important electrical parameters in the study of medical pathology. However, little is known about their application in va...Electrical impedance (El) and phase angle (PHI) parameters in AC impedance spectroscopy are important electrical parameters in the study of medical pathology. However, little is known about their application in variation and genetic relationship studies of forest trees. In order to test whether impedance parameters could be used in genetic relationship analysis among conifer species, E1 and PHI were measured in a seedling experiment test composed of Pinus tabuliformis, Pinus yunnanensis, and Pinus densata in a habitat of Pinus tabuliformis. The results showed that variations in both EI and PHI among species were sig- nificant in different electric frequencies, and the EI and PHI values measured in the two populations of P. densata were between the two parental species, P. yunnanensis and P. tabuliformis. These results show that these two impedance parameters could reflect the genetic relationship among pine species. This was the first time using the two AC impedance spectroscopy parameters to test the genetic relationship analysis between tree species, and would be a hopeful novelreference methodology for future studies in evolution and genetic variation of tree species.展开更多
We employed capacitance to evaluate the kinship and interspecific variation of homoploid hybrid conifer Pinus densata,P.tabuliformis,P.yunnanensis and artificial hybrids of P.tabuliformis(maternal parent)and P.yunnane...We employed capacitance to evaluate the kinship and interspecific variation of homoploid hybrid conifer Pinus densata,P.tabuliformis,P.yunnanensis and artificial hybrids of P.tabuliformis(maternal parent)and P.yunnanensis(paternal parent)which were cultivated and selected in the common garden experiment.By measuring capacitance spectra under different voltage frequencies,we could differentiate different germplasms based on the electrical response.We aims to demonstrate that P.densata as the hybrid of P.tabuliformis and P.yunnanensis based on the capacitance values of the species,and to provide new evidence to the previously known biological evidence,as well as and the parental effect on the hybrids.Our results revealed that capacitance values between the species are significantly different in the spectra where P.yunnanensis positioned at the lowest and P.densata was much higher than all other species,indicating that P.densata had possessed a great capacity to store electrical energy.The capacitance spectra of P.densata and the artificial hybrid are not similar,which rejected our hypothesis.Both of the capacitance values of P.densata and the hybrids were closer to P.tabuliformis than to P.yunnanensis,which shows that the maternal influence was stronger than the paternal influence.Correlation analysis on the relationship between capacitance and fitnessrelated characteristics showed that capacitance is negatively correlated to mortality rate,and positively correlated with second-year survival rate.High capacitance values of P.densata and some of the hybrids reveal their superior adaptability to harsh environment in the Tibet Plateau.We concluded that capacitance as a new indicator for plant fitness and evolution evidence of homoploid hybrid conifers.展开更多
We evaluated a novel and non-destructive method of the electrical impedance spectroscopy(EIS)to elucidate the genetic and evolutionary relationship of homoploid hybrid conifer of Pinus densata(P.d)and its parental spe...We evaluated a novel and non-destructive method of the electrical impedance spectroscopy(EIS)to elucidate the genetic and evolutionary relationship of homoploid hybrid conifer of Pinus densata(P.d)and its parental species Pinus tabuliformis(P.t)and Pinus yunnanensis(P.y),as well as the artificial hybrids of the P.t and P.y.Field common garden tests of96 trees sampled from 760 seedlings and 480 EIS records of 1,440 needles assessed the interspecific variation of the P.d,P.t,P.y and the artificial hybrids.We found that(1)EIS at different frequencies diverged significantly among germplasms;P.y was the highest,P.t was the lowest,and their artificial hybrids were within the range of P.t and P.y;(2)maternal species effect of EIS magnitudes in the hybrids and P.d was stronger than the paternal species characteristics;(3)EIS of the artificial hybrid confirmed the mid-parent and partial maternal species characteristics;(4)unified exponential model of EIS for the interspecific and hybrids can be constructed as|Z|=Af^(-B);(5)cluster analysis for species and hybrid combinations in total corroborated with the previous hybrid model of Pinus densata.Our non-destructive EIS method complemented the previous finding that Pinus densata was originated from P.t and P.y.We conclude that the impedance would be a viable indicator to investigate the interspecific genetic variations of conifers.展开更多
The authors investigated the genetic diversity of 29 natural populations representing Pinus yunnanensis Franch. and its two close relatives, P. densata Mast. and P. kesiya Royle ex Gordn. var. langbianensis (A Chey.) ...The authors investigated the genetic diversity of 29 natural populations representing Pinus yunnanensis Franch. and its two close relatives, P. densata Mast. and P. kesiya Royle ex Gordn. var. langbianensis (A Chey.) Gaussen. Horizontal starch gel electrophoresis was performed for macrogametophytes collected from populations in Yunnan, Sichuan and Guangxi. Allozyme data for 33 loci of 14 enzymes demonstrated high levels of genetic variation at both population and species levels in comparison with other conifers, with the mean values for populations being P=0.694, A =2.0 and He =0.145 for P. yunnanensis; P=0.714, A=2.0 and He =0.174 for P. densata ; and P=0.758, A=2.1 and He =0.184 for P. kesiya var. langbianensis. Based on Wright’s F _statistics, the fixation index of P. yunnanensis, P. densata and P. kesiya var. langbianensis were 0.101, 0.054 and 0.143, respectively, indicating that the populations were largely under random mating. Based on Nei’s genetic distance, the genetic differentiation was not obvious among the three species (i.e. the genetic distance was less than 0.075). Because of the wider distribution of P. yunnanensis with greater variety of habitats, it was shown that the genetic differentiation among the P. yunnanensis populations was larger than that of the populations of the other two species. According to morphological, geographic and allozymic evidences, the authors suggested that the three species be better treated as varieties under a single species. In addition, the extensive gene flow among the three pine species resulted in great genetic diversity and evolutionary potential. Also, high level of genetic variation of P. yunnanensis provides important basis for its genetic improvement and breeding in future.展开更多
基金Supported by Natural Science Foundation of China(31460200)Natural Science Foundation of Tibet Autonomous Region(2016ZR-15-40)~~
文摘Pinusdensata is one of the main constructive species for coniferous forests in southeast Tibet. P. densata forests are important water conservation forests in the drainage basins of the middle and lower reaches of Yalu Tsangpo River, Nyang River and Parlung Zangbo River. In this study, with P. densata forest distributed in southeast Tibet as research object, the seed rain, soil seed bank, seed germination and natural regeneration of P. densata were monitored and ana- lyzed by field investigation, located monitoring and indoor experimental analysis. The results showed that the average intensity of the seed rain of P. densata was 249.30±78.42 seeds/m2, in which the intensity of full seeds was 168.09±56.36 seeds/m2, the intensity of seeds damaged by worms was 41.11±20.25 seeds/m2, and the intensity of empty seeds was 40.10±21.04 seeds/m2. The intensity of the seed rain exhibited a single-peak trend of increasing at first and decreasing then over time. The spatial distribution patterns in the whole seed falling process and at different seed falling time all exhibited clumping distribution, and within in certain range, with the distance from the seed tree increasing, the diffusion intensity of the seed rain was weakened, exhibiting approximately normal distribution. In average density of P. densata seeds in the soil seed bank of P. densata was 231 seeds/m2, in which 62.77% of seeds were distributed in the litter layer, and 37.23% of seeds were distributed in the soil layer, and about 8% of seeds were lost during the pro- cess from seed rain to soil seed bank. Field sowing observation showed that the accumulated germination rate curve of P. densata fitted with Logistics equation y= 91.404/(1+e66194.449). The height structure, basal diameter structure and age structure of seedlings and young trees of P. densata were all of reverse "J" type, indicating good natural regeneration of P. densata. This study would provide a science basis for protection and resource management of P. densata, and further enrich the eval- uation content of national ecological safety curtain of the Tibet plateau.
基金supported by the State Forestry Administration of China under the national forestry commonwealth project grant#201404309the Expert Workstation of Academician Tang Shouzheng of Yunnan Province,the Yunnan provincial key project of Forestrythe Research Center of Kunming Forestry Information Engineering Technology
文摘Southwest China is one of three major forest regions in China and plays an important role in carbon sequestration.Accurate estimations of changes in aboveground biomass are critical for understanding forest carbon cycling and promoting climate change mitigation.Southwest China is characterized by complex topographic features and forest canopy structures,complicating methods for mapping aboveground biomass and its dynamics.The integration of continuous Landsat images and national forest inventory data provides an alternative approach to develop a long-term monitoring program of forest aboveground biomass dynamics.This study explores the development of a methodological framework using historical national forest inventory plot data and Landsat TM timeseries images.This method was formulated by comparing two parametric methods:Linear Regression for Multiple Independent Variables(MLR),and Partial Least Square Regression(PLSR);and two nonparametric methods:Random Forest(RF)and Gradient Boost Regression Tree(GBRT)based on the state of forest aboveground biomass and change models.The methodological framework mapped Pinus densata aboveground biomass and its changes over time in Shangri-la,Yunnan,China.Landsat images and national forest inventory data were acquired for 1987,1992,1997,2002 and 2007.The results show that:(1)correlation and homogeneity texture measures were able to characterize forest canopy structures,aboveground biomass and its dynamics;(2)GBRT and RF predicted Pinus densata aboveground biomass and its changes better than PLSR and MLR;(3)GBRT was the most reliable approach in the estimation of aboveground biomass and its changes;and,(4)the aboveground biomass change models showed a promising improvement of prediction accuracy.This study indicates that the combination of GBRT state and change models developed using temporal Landsat and national forest inventory data provides the potential for developing a methodological framework for the long-term mapping and monitoring program of forest aboveground biomass and its changes in Southwest China.
基金funded by the Natural Science Foundation of China(31070591)Special National Forestry Public Welfare Industry Research(201104022)the support of Agriculture and Animal Husbandry College of Tibet University
文摘Electrical impedance (El) and phase angle (PHI) parameters in AC impedance spectroscopy are important electrical parameters in the study of medical pathology. However, little is known about their application in variation and genetic relationship studies of forest trees. In order to test whether impedance parameters could be used in genetic relationship analysis among conifer species, E1 and PHI were measured in a seedling experiment test composed of Pinus tabuliformis, Pinus yunnanensis, and Pinus densata in a habitat of Pinus tabuliformis. The results showed that variations in both EI and PHI among species were sig- nificant in different electric frequencies, and the EI and PHI values measured in the two populations of P. densata were between the two parental species, P. yunnanensis and P. tabuliformis. These results show that these two impedance parameters could reflect the genetic relationship among pine species. This was the first time using the two AC impedance spectroscopy parameters to test the genetic relationship analysis between tree species, and would be a hopeful novelreference methodology for future studies in evolution and genetic variation of tree species.
文摘We employed capacitance to evaluate the kinship and interspecific variation of homoploid hybrid conifer Pinus densata,P.tabuliformis,P.yunnanensis and artificial hybrids of P.tabuliformis(maternal parent)and P.yunnanensis(paternal parent)which were cultivated and selected in the common garden experiment.By measuring capacitance spectra under different voltage frequencies,we could differentiate different germplasms based on the electrical response.We aims to demonstrate that P.densata as the hybrid of P.tabuliformis and P.yunnanensis based on the capacitance values of the species,and to provide new evidence to the previously known biological evidence,as well as and the parental effect on the hybrids.Our results revealed that capacitance values between the species are significantly different in the spectra where P.yunnanensis positioned at the lowest and P.densata was much higher than all other species,indicating that P.densata had possessed a great capacity to store electrical energy.The capacitance spectra of P.densata and the artificial hybrid are not similar,which rejected our hypothesis.Both of the capacitance values of P.densata and the hybrids were closer to P.tabuliformis than to P.yunnanensis,which shows that the maternal influence was stronger than the paternal influence.Correlation analysis on the relationship between capacitance and fitnessrelated characteristics showed that capacitance is negatively correlated to mortality rate,and positively correlated with second-year survival rate.High capacitance values of P.densata and some of the hybrids reveal their superior adaptability to harsh environment in the Tibet Plateau.We concluded that capacitance as a new indicator for plant fitness and evolution evidence of homoploid hybrid conifers.
基金funded by National Natural Research Fund 31070591,“Adaptation research of Pinus densata,Pinus tabuliformis,Pinus yunnanensis and the hybrids at high elevation habitats”,P.R.China.
文摘We evaluated a novel and non-destructive method of the electrical impedance spectroscopy(EIS)to elucidate the genetic and evolutionary relationship of homoploid hybrid conifer of Pinus densata(P.d)and its parental species Pinus tabuliformis(P.t)and Pinus yunnanensis(P.y),as well as the artificial hybrids of the P.t and P.y.Field common garden tests of96 trees sampled from 760 seedlings and 480 EIS records of 1,440 needles assessed the interspecific variation of the P.d,P.t,P.y and the artificial hybrids.We found that(1)EIS at different frequencies diverged significantly among germplasms;P.y was the highest,P.t was the lowest,and their artificial hybrids were within the range of P.t and P.y;(2)maternal species effect of EIS magnitudes in the hybrids and P.d was stronger than the paternal species characteristics;(3)EIS of the artificial hybrid confirmed the mid-parent and partial maternal species characteristics;(4)unified exponential model of EIS for the interspecific and hybrids can be constructed as|Z|=Af^(-B);(5)cluster analysis for species and hybrid combinations in total corroborated with the previous hybrid model of Pinus densata.Our non-destructive EIS method complemented the previous finding that Pinus densata was originated from P.t and P.y.We conclude that the impedance would be a viable indicator to investigate the interspecific genetic variations of conifers.
文摘The authors investigated the genetic diversity of 29 natural populations representing Pinus yunnanensis Franch. and its two close relatives, P. densata Mast. and P. kesiya Royle ex Gordn. var. langbianensis (A Chey.) Gaussen. Horizontal starch gel electrophoresis was performed for macrogametophytes collected from populations in Yunnan, Sichuan and Guangxi. Allozyme data for 33 loci of 14 enzymes demonstrated high levels of genetic variation at both population and species levels in comparison with other conifers, with the mean values for populations being P=0.694, A =2.0 and He =0.145 for P. yunnanensis; P=0.714, A=2.0 and He =0.174 for P. densata ; and P=0.758, A=2.1 and He =0.184 for P. kesiya var. langbianensis. Based on Wright’s F _statistics, the fixation index of P. yunnanensis, P. densata and P. kesiya var. langbianensis were 0.101, 0.054 and 0.143, respectively, indicating that the populations were largely under random mating. Based on Nei’s genetic distance, the genetic differentiation was not obvious among the three species (i.e. the genetic distance was less than 0.075). Because of the wider distribution of P. yunnanensis with greater variety of habitats, it was shown that the genetic differentiation among the P. yunnanensis populations was larger than that of the populations of the other two species. According to morphological, geographic and allozymic evidences, the authors suggested that the three species be better treated as varieties under a single species. In addition, the extensive gene flow among the three pine species resulted in great genetic diversity and evolutionary potential. Also, high level of genetic variation of P. yunnanensis provides important basis for its genetic improvement and breeding in future.