A utility tunnel system consists of pipes and ancillary facilities.In this paper,a finite element model of a concrete utility tunnel with pipes inside is established.Several tunnel segments were built to simulate a re...A utility tunnel system consists of pipes and ancillary facilities.In this paper,a finite element model of a concrete utility tunnel with pipes inside is established.Several tunnel segments were built to simulate a real utility tunnel,while the pipe was fixed by springs on the brackets in the utility tunnel.Using the discrete soil spring element to simulate the soil-structure interaction,actual earthquake records were adopted as excitation to analyze the seismic responses of pipes in a utility tunnel.Moreover,the influences of different parameters,including soil type,earthquake records,and field apparent wave velocity on the seismic responses of the utility tunnel and the pipes inside were studied.Finally,the seismic responses of buried pipes were analyzed and compared with those of pipes in a utility tunnel to evaluate the seismic performance of pipes for two working conditions.展开更多
Many experiment researches have been developed before. But most of them were carried out with the condition that the tunnel’s ratio of length and diameter (x/D) is under 1000. Recently, the process that compression w...Many experiment researches have been developed before. But most of them were carried out with the condition that the tunnel’s ratio of length and diameter (x/D) is under 1000. Recently, the process that compression wave convents into shock wave in the overlong tunnel has also been paid attention. In this paper, features of shock wave as it propagates through a overlong tunnel is investigated, rupturing thin films at the entrance to obtain three kinds of shock wave with different intensities. Then study their features respectively during they propagates through a overlong tunnel with x/D over 6000 at most. Comprehend shock wave more deeply by comparing the results of experiments.展开更多
基金supported by the Ministry of Science and Technology of China(SLDRCE19-B-24).
文摘A utility tunnel system consists of pipes and ancillary facilities.In this paper,a finite element model of a concrete utility tunnel with pipes inside is established.Several tunnel segments were built to simulate a real utility tunnel,while the pipe was fixed by springs on the brackets in the utility tunnel.Using the discrete soil spring element to simulate the soil-structure interaction,actual earthquake records were adopted as excitation to analyze the seismic responses of pipes in a utility tunnel.Moreover,the influences of different parameters,including soil type,earthquake records,and field apparent wave velocity on the seismic responses of the utility tunnel and the pipes inside were studied.Finally,the seismic responses of buried pipes were analyzed and compared with those of pipes in a utility tunnel to evaluate the seismic performance of pipes for two working conditions.
文摘Many experiment researches have been developed before. But most of them were carried out with the condition that the tunnel’s ratio of length and diameter (x/D) is under 1000. Recently, the process that compression wave convents into shock wave in the overlong tunnel has also been paid attention. In this paper, features of shock wave as it propagates through a overlong tunnel is investigated, rupturing thin films at the entrance to obtain three kinds of shock wave with different intensities. Then study their features respectively during they propagates through a overlong tunnel with x/D over 6000 at most. Comprehend shock wave more deeply by comparing the results of experiments.