In high sour gas reservoir drilling process, it happens occasionally that high-strength drill pipe suffers brittle fracture failure due to stress corrosion cracking, and poses serious hazard to drilling safety. To sol...In high sour gas reservoir drilling process, it happens occasionally that high-strength drill pipe suffers brittle fracture failure due to stress corrosion cracking, and poses serious hazard to drilling safety. To solve this problem, this paper studied the stress corrosion cracking mechanism and infl uencing factors of highstrength drill pipe in sour environment with hydrogen permeation experiments and tensile tests. We simulated practical conditions in laboratory and evaluated the stress corrosion cracking performance of the high-strength drill pipe under conditions of high stress level. For the problems occurring in use of high-strength drill pipe on site, the paper proposed a technical measure for slower stress corrosion cracking.展开更多
Corrosion in drinking water distribution systems(DWDSs)may lead to pipe failures and water quality deterioration;biocorrosion is the most common type.Chlorine disinfectants are widely used in DWDSs to inhibit microorg...Corrosion in drinking water distribution systems(DWDSs)may lead to pipe failures and water quality deterioration;biocorrosion is the most common type.Chlorine disinfectants are widely used in DWDSs to inhibit microorganism growth,but these also promote electrochemical corrosion to a certain extent.This study explored the independent and synergistic effects of chlorine and microorganisms on pipeline corrosion.Sodium hypochlorite(NaOCl)at different concentrations(0,0.25,0.50,and 0.75 mg/L)and iron-oxidizing bacteria(IOB)were added to the reaction system,and a biofilm annular reactor(BAR)was employed to simulate operational water supply pipes and explain the composite effects.The degree of corrosion became severe with increasing NaOCl dosage.IOB accelerated the corrosion rate at an early stage,after which the reaction system gradually stabilized.When NaOCl and IOB existed together in the BAR,both synergistic and antagonistic effects occurred during the corrosion process.The AOC content increased due to the addition of NaOCl,which is conducive to bacterial regrowth.However,biofilm on cast iron coupons was greatly influenced by the disinfectant,leading to a decrease in microbial biomass over time.More research is needed to provide guidelines for pipeline corrosion control.展开更多
The effects of cast iron pipe corrosion onwater quality risk and microbial ecology in drinking water distribution systems(DWDSs)were investigated.It was found that trihalomethane(THMs)concentration and antibiotic resi...The effects of cast iron pipe corrosion onwater quality risk and microbial ecology in drinking water distribution systems(DWDSs)were investigated.It was found that trihalomethane(THMs)concentration and antibiotic resistance genes(ARGs)increased sharply in the old DWDSs.Under the same residual chlorine concentration conditions,the adenosine triphos-phate concentration in the effluent of old DWDSs(Eff-old)was significantly higher than that in the effluent of newDWDSs.Moreover,stronger bioflocculation ability andweaker hy-drophobicity coexisted in the extracellular polymeric substances of Eff-old,meanwhile,iron particles could be well inserted into the structure of the biofilms to enhance the mechanical strength and stability of the biofilms,hence enhancing the formation of THMs.Old DWDSs significantly influenced the microbial community of bulk water and triggered stronger mi-crobial antioxidant systems response,resulting in higher ARGs abundance.Corroded cast iron pipes induced a unique interaction system of biofilms,chlorine,and corrosion prod-ucts.Therefore,as the age of cast iron pipes increases,the fluctuation of water quality and microbial ecology should be paid more attention to maintain the safety of tap water.展开更多
基金Funded by the Program for National Science Fund for Distinguished Young Scholars of China(No.51125019)the National Natural Science Foundation of China(Nos.50904050,51244007)+2 种基金the Basic Projects of Sichuan Province(2011JY0106)the Department of Education Science and Technology Innovation Team Program of Sichuan Province(13TD0026)the Sichuan Distinguished Youth Fund(2013JQ0037)
文摘In high sour gas reservoir drilling process, it happens occasionally that high-strength drill pipe suffers brittle fracture failure due to stress corrosion cracking, and poses serious hazard to drilling safety. To solve this problem, this paper studied the stress corrosion cracking mechanism and infl uencing factors of highstrength drill pipe in sour environment with hydrogen permeation experiments and tensile tests. We simulated practical conditions in laboratory and evaluated the stress corrosion cracking performance of the high-strength drill pipe under conditions of high stress level. For the problems occurring in use of high-strength drill pipe on site, the paper proposed a technical measure for slower stress corrosion cracking.
基金grateful for primary support from the National Natural Science Foundation of China(Grant No.51979194).
文摘Corrosion in drinking water distribution systems(DWDSs)may lead to pipe failures and water quality deterioration;biocorrosion is the most common type.Chlorine disinfectants are widely used in DWDSs to inhibit microorganism growth,but these also promote electrochemical corrosion to a certain extent.This study explored the independent and synergistic effects of chlorine and microorganisms on pipeline corrosion.Sodium hypochlorite(NaOCl)at different concentrations(0,0.25,0.50,and 0.75 mg/L)and iron-oxidizing bacteria(IOB)were added to the reaction system,and a biofilm annular reactor(BAR)was employed to simulate operational water supply pipes and explain the composite effects.The degree of corrosion became severe with increasing NaOCl dosage.IOB accelerated the corrosion rate at an early stage,after which the reaction system gradually stabilized.When NaOCl and IOB existed together in the BAR,both synergistic and antagonistic effects occurred during the corrosion process.The AOC content increased due to the addition of NaOCl,which is conducive to bacterial regrowth.However,biofilm on cast iron coupons was greatly influenced by the disinfectant,leading to a decrease in microbial biomass over time.More research is needed to provide guidelines for pipeline corrosion control.
基金supported by the National Natural Science Foundation of China(Nos.52000043,and 51838005)the intro-duced innovative R&D team project under the“The Pearl River Talent Recruitment Program”of Guangdong Province(No.2019ZT08L387)+2 种基金the Guangdong Natural Science Foundation(No.2023A1515011509)the Science and Technology Research Project of Guangzhou(Nos.202201020177,202102020986 and 202102021044)the special fund from Key Laboratory of Drinking Water Science and Technology,Research Center for Eco-Environmental Sciences,Chinese Academy of Sciences(No.20K01KLDWST).
文摘The effects of cast iron pipe corrosion onwater quality risk and microbial ecology in drinking water distribution systems(DWDSs)were investigated.It was found that trihalomethane(THMs)concentration and antibiotic resistance genes(ARGs)increased sharply in the old DWDSs.Under the same residual chlorine concentration conditions,the adenosine triphos-phate concentration in the effluent of old DWDSs(Eff-old)was significantly higher than that in the effluent of newDWDSs.Moreover,stronger bioflocculation ability andweaker hy-drophobicity coexisted in the extracellular polymeric substances of Eff-old,meanwhile,iron particles could be well inserted into the structure of the biofilms to enhance the mechanical strength and stability of the biofilms,hence enhancing the formation of THMs.Old DWDSs significantly influenced the microbial community of bulk water and triggered stronger mi-crobial antioxidant systems response,resulting in higher ARGs abundance.Corroded cast iron pipes induced a unique interaction system of biofilms,chlorine,and corrosion prod-ucts.Therefore,as the age of cast iron pipes increases,the fluctuation of water quality and microbial ecology should be paid more attention to maintain the safety of tap water.