With the goal of“carbon peaking and carbon neutralization”,it is an inevitable trend for investing smart grid to promote the large-scale grid connection of renewable energy.Smart grid investment has a significant dr...With the goal of“carbon peaking and carbon neutralization”,it is an inevitable trend for investing smart grid to promote the large-scale grid connection of renewable energy.Smart grid investment has a significant driving effect(derivative value),and evaluating this value can help to more accurately grasp the external effects of smart grid investment and support the realization of industrial linkage value with power grid investment as the core.Therefore,by analyzing the characterization of the derivative value of smart grid driven by investment,this paper constructs the evaluation index system of the derivative value of smart grid investment including 11 indicators.Then,the hybrid evaluation model of the derivative value of smart grid investment is developed based on anti-entropy weight(AEW),level based weight assessment(LBWA),and measurement alternatives and ranking according to the compromise solution(MARCOS)techniques.The results of case analysis show that for SG investment,the value of sustainable development can better reflect its derivative value,and when smart grid performs poorly in promoting renewable energy consumption,improving primary energy efficiency,and improving its own fault resistance,the driving force of its investment for future sustainable development will decline significantly,making the grid investment lack derivative value.In addition,smart grid investment needs to pay attention to the economy of investment,which is an important guarantee to ensure that the power grid has sufficient and stable sources of investment funds.Finally,compared with three comparison models,the proposed hybrid multi-criteria decision-making(MCDM)model can better improve the decision-making efficiency on the premise of ensuring robustness.展开更多
Biomass, as the most widely used carbon sources, is the main ingredient in the formation of fossil fuels. Biomass-derived novel carbons(BDNCs) have attracted much attention because of its adjustable physical/chemical ...Biomass, as the most widely used carbon sources, is the main ingredient in the formation of fossil fuels. Biomass-derived novel carbons(BDNCs) have attracted much attention because of its adjustable physical/chemical properties, environmentally friendliness, and considerable economic value. Nature contributes to the biomass with bizarre microstructures with micropores, mesopores or hierarchical pores.Currently, it has been confirmed that biomass has great potential applications in energy storage devices,especially in lithium-sulfur(Li–S) batteries. In this article, the synthesis and function of BDNCs for Li–S batteries are presented, and the electrochemical effects of structural diversity, porosity and surface heteroatom doping of the carbons in Li-S batteries are discussed. In addition, the economic benefits, new trends and challenges are also proposed for further design excellent BDNCs for Li–S batteries.展开更多
Lithium-sulfur(Li-S) battery is a potential energy storage technology with high energy density and low cost. However, the gap between theoretical expectation and practical performance limits its wide implementation. H...Lithium-sulfur(Li-S) battery is a potential energy storage technology with high energy density and low cost. However, the gap between theoretical expectation and practical performance limits its wide implementation. Herein, we report a nitrogen-doped porous carbon derived from biomass pomelo peel as sulfur host material for Li-S batteries. The hierarchical porous architecture and the polar surface introduced by N-doping render a favorable combination of physical and chemical sulfur confinements as well as an expedite electron/ion transfer, thus contributing to a facilitated and stabilized sulfur electrochemistry. As a result, the corresponding sulfur composite electrodes exhibit an ultrahigh initial capacity of 1534.6 mAh g^-1, high coulombic efficiency over 98% upon 300 cycles, and decent rate capability up to 2 C. This work provides an economical and effective strategy for the fabrication of advanced carbonaceous sulfur host material as well as the significant improvement of Li-S battery performance.展开更多
One-dimensional graphene fibers(GFs)possess excellent properties,including high electrical conductivity,good physical and chemical stability,high thermal conductivity,flexibility,etc.GFs are ideal electrode materials ...One-dimensional graphene fibers(GFs)possess excellent properties,including high electrical conductivity,good physical and chemical stability,high thermal conductivity,flexibility,etc.GFs are ideal electrode materials for fiber-shaped supercapacitors.However,due to the lack of an effective method to manufacture GFs with high specific capacitance,their low energy density hinders their practical application.Herein,we decorated wet-spun graphene oxide fibers(GOFs)by dip-coating them with graphene oxide(GO)solutions containing different contents of lignin to obtain a core-sheath lignin/GO composite fibers.After carbonization and activation,we successfully prepared lignin derived carbon/GF electrodes.The assembled fiber-shaped supercapacitors(FSSCs)exhibit a specific capacitance of 9.98 mF/cm^(2)and an energy density of 0.89μW·h/cm^(2),about 6 times of those of pure GFs(1.57 mF/cm^(2)and 0.14μW·h/cm^(2),respectively),long cycling life and cycling stability.This suggests that the introduction of lignin derived carbon into GFs can effectively increase the specific capacitance and the energy density of FSSCs.展开更多
Activated carbons derived from corncob (CACs) were prepared by pyrolysis carbonization and KOH activation. Through modifying activation conditions, samples with large pore volume and ultrahigh BET specific surface a...Activated carbons derived from corncob (CACs) were prepared by pyrolysis carbonization and KOH activation. Through modifying activation conditions, samples with large pore volume and ultrahigh BET specific surface area could be obtained. The sample achieved the highest hydrogen uptake capacity of 5.80 wt% at 40 bar and -196℃ The as-obtained samples were characterized by N2-sorption, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Besides, thermogravimetric analysis was also employed to investigate the activation behavior of CACs. Detailed investigation on the activation parameters reveals that moderate activation temperature and heating rate are favorable for preparing CACs with high surface area, large pore volume and optimal pore size distribution. Meanwhile, the micropore volume between 0.65 nm and 0.85 nm along with BET surface area and total pore volume has great effects on hydrogen uptake capacities. The present results indicate that CACs are the most promising materials for hydrogen storage application.展开更多
Nowadays,hierarchically macro-/meso-/microporous 3D carbon materials have been paid more attention due to their imaginative application potential in specific electrochemistry.Here,we report a dualtemplate strategy usi...Nowadays,hierarchically macro-/meso-/microporous 3D carbon materials have been paid more attention due to their imaginative application potential in specific electrochemistry.Here,we report a dualtemplate strategy using eutectic NaCl/ZnCl2 melt as airtight and swelling agent to obtain 3D mesoporous skeleton structured carbon from renewable lignin.The prepared lignin-derived biocarbon material(LN-3-1)has a high specific surface area(1289 m^2 g^-1),a large pore volume(2.80 cm^3 g^-1),and a well-connected and stable structure.LN-3-1 exhibits extremely high activity and stability in acidic medium for oxygen reduction reaction(ORR),superior to Pt/C catalyst and most non noble-metal catalysts reported in recent literatures.The prepared carbon material was used as a cathode catalyst to assemble a H2-O2 single fuel cell,and its excellent catalytic performance has been confirmed with the maximum power density of 779 mW cm^-2,which is one of the highest power densities among non-metallic catalysts so far.Density functional theory(DFT)calculations indicate that the synergy of chlorine and nitrogen reconciles the intermediate adsorption energies,leading to an appropriate theoretical ORR onset potential.We develop a cost-effective and highly efficient method to prepare biocarbon catalyst for ORR in proton-exchange membrane fuel cells.展开更多
Biomass-derived carbon materials have aroused widespread concern as host material of sulfur to enhance electrochemical performances for lithium–sulfur batteries. Herein, goat hair, as a low-cost and eco-friendly prec...Biomass-derived carbon materials have aroused widespread concern as host material of sulfur to enhance electrochemical performances for lithium–sulfur batteries. Herein, goat hair, as a low-cost and eco-friendly precursor, is employed to fabricate cauliflower-like in-situ nitrogen, oxygen and phosphorus tri-doped porous biomass carbon(NOPC) by a facile activation with H_3PO_4 and carbonization process.The morphology and microstructure of NOPC can be readily tuned by altering pyrolysis temperature. The as-prepared NOPC matrix material carbonized at 600 °C possesses 3D hierarchical porous structure, high specific surface area(535.352 m^2 g^(-1)), and appropriate pore size and pore size distribution. Encapsulating sulfur into the NOPC depends on a stem-melting technology as cathode materials of Li–S batteries. Due to the synergistic effect of special physical structure and inherent tri-doping of N, O and P, electrons and ions transfer and utilization of active sulfur in the materials are improved, and the shuttle behaviors of soluble lithium polysulfides are also mitigated. Consequently, the S/NOPC-600 composite exhibits excellent electrochemical performance, giving a high initial discharge capacity of 1185 mA h g^(-1) at 0.05 C and maintaining a relatively considerable capacity of 489 m A h g^(-1) at 0.2 C after 300 cycles. Our work shows that a promising candidate for cathode material of Li–S batteries can be synthesized using low-cost and renewable biomass materials by a facile process.展开更多
Herein,we have presented a supercapacitor based on carbide derived carbon(CDC) electrode with natural graphite(NG) addition.The capacitor was analyzed at 22°C by cyclic voltammetry,galvanostatic charge-discha...Herein,we have presented a supercapacitor based on carbide derived carbon(CDC) electrode with natural graphite(NG) addition.The capacitor was analyzed at 22°C by cyclic voltammetry,galvanostatic charge-discharge and impedance techniques using a 0.5 mol/L of magnesium(II)bis(trifluoro methanesulfonyl) imide(Mg TFSI) in ethylene carbonate-propylene carbonate(EC :PC = 1 :1,v/v) as electrolyte.The results conclude that the CDC cell enhancements have been proven by the composite electrode(5%–30% NG to CDC) especially on the cell efficiency and voltage i.e.,the CDC cell around 2.5 V limit was improved.An obtainable specific capacitance,real power and energy density are 15 F g-1,1.2 k W kg-1and 15 Wh kg-1,respectively.展开更多
This effluent remediation research on discoloration tends to disagree with the use of commercial activated carbon as received from manufacturers. Product specification and authentication is a key task to chemists and ...This effluent remediation research on discoloration tends to disagree with the use of commercial activated carbon as received from manufacturers. Product specification and authentication is a key task to chemists and scientist. Here, Batch kinetic studies via pseudo approximations treatments was adopted to to investigate the rate of Methyl Red (MR) dye solution uptake onto carbon animalis earlier received as Granulated Activated Carbon (GAC) and later formulated as Powdered Activated Carbon (PAC). The rate of dye uptake was studied with data fitted in to the Lagergren’s pseudo first and second order kinetic models. Justification by the R2 values (0.984) for GACgreater than 0.865 for PAC, low statistical error (SSE%) range of 1.065 - 2.310 and closeness between the experimented and calculated qe values all favored the second order kinetic model. The deviation of the line from the origin further showed that intra-particle transport is not the only rate limiting step. Generally the research supported the manufacturer’s choice of particle size (as GAC and not PAC) for the chosen adsorbate.展开更多
Metal-organic frameworks are compounds with a reticulated skeletal structure formed by chemically bonding inorganic and organic units that are widely used in many fields, such as photocatalysis, gas separation and ene...Metal-organic frameworks are compounds with a reticulated skeletal structure formed by chemically bonding inorganic and organic units that are widely used in many fields, such as photocatalysis, gas separation and energy storage, because of their unique structures. In this paper, we prepared a metal-organic framework [(<em>μ</em><sub>2</sub>-2-methylimidazolyl)<sub>12</sub>-Zn(ii)<sub>6</sub>-H<sub>18</sub>O<sub>10</sub>]<sub>n</sub>(ZM) with well-developed pores and high specific surface area of MOFs by the solution method. And MOF-derived porous carbon was prepared by the direct charring method in an argon atmosphere using a mixture of ZM, ZM and potassium citrate as carbon precursors. Characterization analysis revealed that the maximum specific surface area of ZMPC-800-1:15 was 2014.97 m<sup>2</sup><span style="white-space:nowrap;">⋅</span>g<sup><span style="white-space:nowrap;">−</span>1</sup>, and the pore size structure was mainly mesoporous. At a current density of 1.0 A<span style="white-space:nowrap;">⋅</span>g<sup><span style="white-space:nowrap;">−</span>1</sup> the specific capacitance of ZMC-800 and ZMPC-800-1:15 was 121.3 F<span style="white-space:nowrap;">⋅</span>g<sup><span style="white-space:nowrap;">−</span>1</sup> and 226.6 F<span style="white-space:nowrap;">⋅</span>g<sup><span style="white-space:nowrap;">−</span>1</sup>, respectively, with a substantial increase of 86.8%. The specific capacitance of ZMPC-800-1:15 decays to 168.8 F<span style="white-space:nowrap;">⋅</span>g<sup><span style="white-space:nowrap;">−</span>1</sup>, with a decay rate of 25.5%, when the current density increases to 10.0 A<span style="white-space:nowrap;">⋅</span>g<sup><span style="white-space:nowrap;">−</span>1</sup>. After 5000 constant current charge/ discharge cycles, the capacitance retention rate was still 96.41%. These results prove that the application of MOF-derived carbon materials in future supercapacitors is very promising.展开更多
Activated carbon fiber(ACF)is undoubtedly one of the most significant carbon nanocomposite materials to consider from the perspective of application in adsorption.Compared to other commercial porous storage materials,...Activated carbon fiber(ACF)is undoubtedly one of the most significant carbon nanocomposite materials to consider from the perspective of application in adsorption.Compared to other commercial porous storage materials,it offers many benefits.With a fiber-like shape and a clearly defined porosity structure,activated carbon fiber(ACF)is a potential microporous material.In general,synthetic carbon fiber(CF)can be used to commercially make ACF with the inclusion of an activation procedure.High packing density,outstanding volumetric capacity,rapid adsorption/desorption,and ease of handling are some of the unique properties of ACF.The production expenses of ACF are made up of fiber processing costs and activation costs,both of which are comparatively more expensive than those of other activated carbons.Recently,researchers have indicated that the manufacturing of ACF from less expensive precursors might be accomplished by preparing activated carbon(AC)from agricultural wastes.In comparison to synthetic ACF,there were fewer details and publicly accessible sources of information about these natural fiber derived ACF.The cost of processing fiber is higher and shaping fiber into the correct shape is challenging.In this study,social and environmental compliance,economic development,advantages of carbon fiber,and applications of carbon fiber are discussed.展开更多
β-SiC ceramic powders were obtained by pyrolyzing polycarbosilane in vacuum at 800-1200 °C. The β-SiC ceramic powders were characterized by TGA/DSC, XRD and Raman spectroscopy. The dielectric properties of β-S...β-SiC ceramic powders were obtained by pyrolyzing polycarbosilane in vacuum at 800-1200 °C. The β-SiC ceramic powders were characterized by TGA/DSC, XRD and Raman spectroscopy. The dielectric properties of β-SiC ceramic powders were investigated by measuring their complex permittivity by rectangle wave guide method in the frequency range of 8.2-18 GHz. The results show that both real part ε′ and imaginary part ε″ of complex permittivity increase with increasing pyrolysis temperature. The mechanism was proposed that order carbon formed at high temperature resulted in electron relaxation polarization and conductance loss, which contributes to the increase in complex permittivity.展开更多
A dual wavelength differential first derivative spectrophotometric method has been developed to standardize the concentration of a saturated aqueous solution of carbon monoxide (CO) as the standard and to identify and...A dual wavelength differential first derivative spectrophotometric method has been developed to standardize the concentration of a saturated aqueous solution of carbon monoxide (CO) as the standard and to identify and to determine CO formed during the microsomal metabolism of xenobiotics in vitro. The method can significantly eliminate the background interference in the assay media and increase the quantitative accuracy and the sensitivity. There is a good linear relationship between CO concentration in the range of 2~10 μmol·L 1 CO and the distance D between the first derivative peak at 415 nm amd valley at 426 nm with r=0.9999(n=5),the regression equation being C (mmol·L 1 )=17.6D 0.4, the detection limit lower than 0.1 μmol·L 1 CO. The average recoveries of CO from the assay system and the sample were 102.1%, RSD=2.9% (n=7) and 79.7%, RSD=6.8% (n=12),respectively. The RSD of within day was 4.4%(n=18),and the RSD of day to day was 6.1%(n=16). By this method, four trihaloanilines and one trihalobenzene were tested, the results showed that only 2,4,5 trifluoroaniline could be converted to CO by the incubation with rat hepatic microsomes, NADPH and oxygen, the ability of phenobarbital or dexamethasone to induce rat hepatic microsomes to catalyze CO formation was 3 or 8 times higher than that of the control.展开更多
Electrocatalytic n-valeraldehyde oxidation reaction was an inexpensive and eco-friendly method to control n-valeraldehyde contamination and produce high value-added octane.However,low-cost and readily available electr...Electrocatalytic n-valeraldehyde oxidation reaction was an inexpensive and eco-friendly method to control n-valeraldehyde contamination and produce high value-added octane.However,low-cost and readily available electrocatalysts with high current efficiency were urgently needed.Herein,two-dimensional porous carbon derived from pollen with enlarged interlayer distance was built by alkali activation method,applying in electrocatalytic n-valeraldehyde oxidation reaction.The enlarged interlayer distance was verified by X-ray diffraction(XRD)and high-angle annular dark-field scanning transmission electron microscope(HAADF-STEM).Electrocatalytic experiments consequences showed activated biomass derived carbon possessed a higher electrocatalytic activity and octane selectivity than unactivated catalyst.Systematic tests and in situ infrared experiments demonstrated that enlarged interlayer distance was positively correlated with specific surface area of catalysts,large specific surface area provided abundant absorption sites,facilitated the adsorption for n-valeraldehyde,and further promoted the transformation of n-valeraldehyde to octane.This work also provides a new avenue for creating high-performance electrocatalysts in terms of lattice engineering.展开更多
Carbon dots(CDs)have been attracted much attention and widely studied due to their excellent fluorescence(FL)properties,better biocompatibility and outstanding photo/chemical stability.However,the disadvantage of lowe...Carbon dots(CDs)have been attracted much attention and widely studied due to their excellent fluorescence(FL)properties,better biocompatibility and outstanding photo/chemical stability.However,the disadvantage of lower quantum yield(QY)still limits its wide application.Herein,we reported a novel and convenient strategy to prepare photo-induced Ag/CDs(p-Ag/CDs)by irradiating the mixed Ag+and hydrophobic CDs(h-CDs)acetone solution with ultraviolet(UV)light.The obtained p-Ag/CDs exhibit a greatly enhanced FL emission together with a blue shift(460 nm)than h-CDs(520 nm).The QY of p-Ag/CDs is measured to be 51.1%,which is 10.4 times higher than that of h-CDs(4.9%),indicating that photo-induced Ag modulation can effectively improve the optical properties of CDs.The mechanisms for the FL enhancement and blue shift of h-CDs are studied in detail.The results prove that the greatly enhanced FL emission is from the generated Ag nanoparticles(AgNPs)by UV light irradiation based on metal-enhanced fluorescence(MEF),and the increased oxygen-contained groups in this process lead to the blue shift in CDs fluorescence.Interestingly,the p-Ag/CDs exhibit higher sensitivity and selectivity for sulfide ions(S2-)detection than that of h-CDs,which have a lower response to S2-.This work not only offers a novel strategy to improve the FL properties of materials but also endows them with new functions and broadens their application fields.展开更多
A series of glucose derivatives have been used as chelating reagents to extract metal ions in supercritical carbon dioxide. With perfluoro-l-octanesulfonic acid tetraethylammonium salt as additive, glucose derivatives...A series of glucose derivatives have been used as chelating reagents to extract metal ions in supercritical carbon dioxide. With perfluoro-l-octanesulfonic acid tetraethylammonium salt as additive, glucose derivatives were selective for Sr^2+ and Pb^2+ extraction in supercritical carbon dioxide.展开更多
Lithium-sulfur batteries(Li–S batteries) are promising candidates for the next generation high-energy rechargeable Li batteries due to their high theoretical specific capacity(1672 m Ahg-1) and energy density(2500 Wh...Lithium-sulfur batteries(Li–S batteries) are promising candidates for the next generation high-energy rechargeable Li batteries due to their high theoretical specific capacity(1672 m Ahg-1) and energy density(2500 Wh kg-1). The commercialization of Li–S batteries is impeded by several key challenges at cathode side, e.g. the insulating nature of sulfur and discharged products(Li2S 2 and Li2S), the solubility of long-chain polysulfides and volume variation of sulfur cathode upon cycling. Recently, the carbonbased derivatives from metal-organic frameworks(MOFs) has emerged talent in their utilization as cathode hosts for Li–S batteries. They are not only highly conductive and porous to enable the acceleration of Li +/e-transfer and accommodation of volumetric expansion of sulfur cathode during cycling, but also enriched by controllable chemical active sites to enable the adsorption of polysulfides and promotion of their conversion reaction kinetics. In this review, based on the types of MOFs(e.g. ZIF-8, ZIF-67, Prussian blue, Al-MOF, MOF-5, Cu-MOF, Ni-MOF), the synthetic methods, formation process and morphology, structural superiority of MOFs-derived carbon frameworks along with their electrochemical performance as cathode host in Li–S batteries are summarized and discussed.展开更多
The conductivity of polymer-derived SiOCN ceramics exhibited an Arrhenius dependence on pyrolysis temperature, with the activation energy of ~3.95 eV. The formation and structure change of the free carbon phase were d...The conductivity of polymer-derived SiOCN ceramics exhibited an Arrhenius dependence on pyrolysis temperature, with the activation energy of ~3.95 eV. The formation and structure change of the free carbon phase were detected by means of electron spin resonance spectroscopy and X-ray photoelectron spectroscopy. It reveals that the number of dangling bonds on the free carbon is increased as pyrolysis temperature increases, with the activation energy of ~3.87 eV. So it is demonstrated that the pyrolysis-temperature induced increase in the conductivity is mainly attributed to the increase of dangling on the graphite-like carbon.展开更多
In the process of exploration and development of oil and gas fields, the acidic environment of oil reservoir, production and transport processes cause corrosion of pipelines and equipment, resulting in huge economic l...In the process of exploration and development of oil and gas fields, the acidic environment of oil reservoir, production and transport processes cause corrosion of pipelines and equipment, resulting in huge economic losses and production safety risks. Corrosion inhibitors were widely used in oil industry because of simple operation process and economical. In this study, three environmentally friendly corrosion inhibitors were synthesized based on the natural polysaccharide chitosan. Corrosion inhibition of three dendritic chitosan derivatives (We name them BH, CH and DH) on mild steel in 1 mol/L HCl solution with natural ventilation system was evaluated by weight loss experiment, electrochemical analysis and surface morphology characterization. The experimental results showed that when the three dendritic chitosan derivatives added in the corrosive medium were 500 mg L^(−1), the corrosion inhibition efficiencies were all more than 80%. Based on quantum chemical calculation, inhibition mechanisms of three dendritic chitosan derivatives were investigated according to molecular structures. The results showed that the benzene ring, Schiff base and N atom contained in the molecule were the active centers of electron exchange, which were more likely to form a film on the carbon steel surface, thereby slowing or inhibiting corrosion. The results also predicted the corrosion inhibition effect BH > DH > CH, which was consistent with the experimental conclusion.展开更多
文摘With the goal of“carbon peaking and carbon neutralization”,it is an inevitable trend for investing smart grid to promote the large-scale grid connection of renewable energy.Smart grid investment has a significant driving effect(derivative value),and evaluating this value can help to more accurately grasp the external effects of smart grid investment and support the realization of industrial linkage value with power grid investment as the core.Therefore,by analyzing the characterization of the derivative value of smart grid driven by investment,this paper constructs the evaluation index system of the derivative value of smart grid investment including 11 indicators.Then,the hybrid evaluation model of the derivative value of smart grid investment is developed based on anti-entropy weight(AEW),level based weight assessment(LBWA),and measurement alternatives and ranking according to the compromise solution(MARCOS)techniques.The results of case analysis show that for SG investment,the value of sustainable development can better reflect its derivative value,and when smart grid performs poorly in promoting renewable energy consumption,improving primary energy efficiency,and improving its own fault resistance,the driving force of its investment for future sustainable development will decline significantly,making the grid investment lack derivative value.In addition,smart grid investment needs to pay attention to the economy of investment,which is an important guarantee to ensure that the power grid has sufficient and stable sources of investment funds.Finally,compared with three comparison models,the proposed hybrid multi-criteria decision-making(MCDM)model can better improve the decision-making efficiency on the premise of ensuring robustness.
基金supported by the National Natural Science Foundation of China (U1832136 and 21303038)Think-Tank Union Funds for Energy Storage (Grant No.JZ2016QTXM1097)+3 种基金Open Funds of the State Key Laboratory of Rare Earth Resource Utilization (Grant No. RERU2016004)the Fundamental Research Funds for the Central Universities (JZ2016HGTA0690)Natural Science Foundation of Anhui province (1808085QE140)100 Talents Plan of Anhui
文摘Biomass, as the most widely used carbon sources, is the main ingredient in the formation of fossil fuels. Biomass-derived novel carbons(BDNCs) have attracted much attention because of its adjustable physical/chemical properties, environmentally friendliness, and considerable economic value. Nature contributes to the biomass with bizarre microstructures with micropores, mesopores or hierarchical pores.Currently, it has been confirmed that biomass has great potential applications in energy storage devices,especially in lithium-sulfur(Li–S) batteries. In this article, the synthesis and function of BDNCs for Li–S batteries are presented, and the electrochemical effects of structural diversity, porosity and surface heteroatom doping of the carbons in Li-S batteries are discussed. In addition, the economic benefits, new trends and challenges are also proposed for further design excellent BDNCs for Li–S batteries.
基金financially supported by the Natural Science Foundation of Beijing (No. L182062)the Beijing Nova program (Z171100001117077)+5 种基金the Yue Qi Young Scholar Project of China University of Mining & Technology (Beijing) (No. 2017QN17)the Fundamental Research Funds for the Central Universities (No.2014QJ02)the program for the Development of Science and Technology of Jilin Province (Nos. 20190201309JC and 20190101009JH)the Project of Development and Reform Commission of Jilin Province (No. 2019C042-1)the support from Natural Sciences and Engineering Research Council of Canada (NSERC)the University of Waterloo.
文摘Lithium-sulfur(Li-S) battery is a potential energy storage technology with high energy density and low cost. However, the gap between theoretical expectation and practical performance limits its wide implementation. Herein, we report a nitrogen-doped porous carbon derived from biomass pomelo peel as sulfur host material for Li-S batteries. The hierarchical porous architecture and the polar surface introduced by N-doping render a favorable combination of physical and chemical sulfur confinements as well as an expedite electron/ion transfer, thus contributing to a facilitated and stabilized sulfur electrochemistry. As a result, the corresponding sulfur composite electrodes exhibit an ultrahigh initial capacity of 1534.6 mAh g^-1, high coulombic efficiency over 98% upon 300 cycles, and decent rate capability up to 2 C. This work provides an economical and effective strategy for the fabrication of advanced carbonaceous sulfur host material as well as the significant improvement of Li-S battery performance.
基金National Natural Science Foundation of China(No.51903033)Fundamental Research Funds for the Central Universities,China(Nos.2232020G-01 and 20D110110)Shanghai Sailing Program,China(No.19YF1400800)。
文摘One-dimensional graphene fibers(GFs)possess excellent properties,including high electrical conductivity,good physical and chemical stability,high thermal conductivity,flexibility,etc.GFs are ideal electrode materials for fiber-shaped supercapacitors.However,due to the lack of an effective method to manufacture GFs with high specific capacitance,their low energy density hinders their practical application.Herein,we decorated wet-spun graphene oxide fibers(GOFs)by dip-coating them with graphene oxide(GO)solutions containing different contents of lignin to obtain a core-sheath lignin/GO composite fibers.After carbonization and activation,we successfully prepared lignin derived carbon/GF electrodes.The assembled fiber-shaped supercapacitors(FSSCs)exhibit a specific capacitance of 9.98 mF/cm^(2)and an energy density of 0.89μW·h/cm^(2),about 6 times of those of pure GFs(1.57 mF/cm^(2)and 0.14μW·h/cm^(2),respectively),long cycling life and cycling stability.This suggests that the introduction of lignin derived carbon into GFs can effectively increase the specific capacitance and the energy density of FSSCs.
基金supported by the National High Technology Research and Development Program of China(863 Program)(2012AA053305)the International Cooperation Project from Ministry of Science and Technology of China(2010DFA64080)
文摘Activated carbons derived from corncob (CACs) were prepared by pyrolysis carbonization and KOH activation. Through modifying activation conditions, samples with large pore volume and ultrahigh BET specific surface area could be obtained. The sample achieved the highest hydrogen uptake capacity of 5.80 wt% at 40 bar and -196℃ The as-obtained samples were characterized by N2-sorption, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Besides, thermogravimetric analysis was also employed to investigate the activation behavior of CACs. Detailed investigation on the activation parameters reveals that moderate activation temperature and heating rate are favorable for preparing CACs with high surface area, large pore volume and optimal pore size distribution. Meanwhile, the micropore volume between 0.65 nm and 0.85 nm along with BET surface area and total pore volume has great effects on hydrogen uptake capacities. The present results indicate that CACs are the most promising materials for hydrogen storage application.
基金the financial support from the National Natural Science Foundation of China(No.21373091)the Science and Technology Project of Guangzhou City(No.201704030040).
文摘Nowadays,hierarchically macro-/meso-/microporous 3D carbon materials have been paid more attention due to their imaginative application potential in specific electrochemistry.Here,we report a dualtemplate strategy using eutectic NaCl/ZnCl2 melt as airtight and swelling agent to obtain 3D mesoporous skeleton structured carbon from renewable lignin.The prepared lignin-derived biocarbon material(LN-3-1)has a high specific surface area(1289 m^2 g^-1),a large pore volume(2.80 cm^3 g^-1),and a well-connected and stable structure.LN-3-1 exhibits extremely high activity and stability in acidic medium for oxygen reduction reaction(ORR),superior to Pt/C catalyst and most non noble-metal catalysts reported in recent literatures.The prepared carbon material was used as a cathode catalyst to assemble a H2-O2 single fuel cell,and its excellent catalytic performance has been confirmed with the maximum power density of 779 mW cm^-2,which is one of the highest power densities among non-metallic catalysts so far.Density functional theory(DFT)calculations indicate that the synergy of chlorine and nitrogen reconciles the intermediate adsorption energies,leading to an appropriate theoretical ORR onset potential.We develop a cost-effective and highly efficient method to prepare biocarbon catalyst for ORR in proton-exchange membrane fuel cells.
基金supported by the projects of Sichuan Normal University(DJ GX2017017 and DJ GX2017018)
文摘Biomass-derived carbon materials have aroused widespread concern as host material of sulfur to enhance electrochemical performances for lithium–sulfur batteries. Herein, goat hair, as a low-cost and eco-friendly precursor, is employed to fabricate cauliflower-like in-situ nitrogen, oxygen and phosphorus tri-doped porous biomass carbon(NOPC) by a facile activation with H_3PO_4 and carbonization process.The morphology and microstructure of NOPC can be readily tuned by altering pyrolysis temperature. The as-prepared NOPC matrix material carbonized at 600 °C possesses 3D hierarchical porous structure, high specific surface area(535.352 m^2 g^(-1)), and appropriate pore size and pore size distribution. Encapsulating sulfur into the NOPC depends on a stem-melting technology as cathode materials of Li–S batteries. Due to the synergistic effect of special physical structure and inherent tri-doping of N, O and P, electrons and ions transfer and utilization of active sulfur in the materials are improved, and the shuttle behaviors of soluble lithium polysulfides are also mitigated. Consequently, the S/NOPC-600 composite exhibits excellent electrochemical performance, giving a high initial discharge capacity of 1185 mA h g^(-1) at 0.05 C and maintaining a relatively considerable capacity of 489 m A h g^(-1) at 0.2 C after 300 cycles. Our work shows that a promising candidate for cathode material of Li–S batteries can be synthesized using low-cost and renewable biomass materials by a facile process.
基金RC personally thanks Marie Curie Amarout award and its financial support of this work
文摘Herein,we have presented a supercapacitor based on carbide derived carbon(CDC) electrode with natural graphite(NG) addition.The capacitor was analyzed at 22°C by cyclic voltammetry,galvanostatic charge-discharge and impedance techniques using a 0.5 mol/L of magnesium(II)bis(trifluoro methanesulfonyl) imide(Mg TFSI) in ethylene carbonate-propylene carbonate(EC :PC = 1 :1,v/v) as electrolyte.The results conclude that the CDC cell enhancements have been proven by the composite electrode(5%–30% NG to CDC) especially on the cell efficiency and voltage i.e.,the CDC cell around 2.5 V limit was improved.An obtainable specific capacitance,real power and energy density are 15 F g-1,1.2 k W kg-1and 15 Wh kg-1,respectively.
文摘This effluent remediation research on discoloration tends to disagree with the use of commercial activated carbon as received from manufacturers. Product specification and authentication is a key task to chemists and scientist. Here, Batch kinetic studies via pseudo approximations treatments was adopted to to investigate the rate of Methyl Red (MR) dye solution uptake onto carbon animalis earlier received as Granulated Activated Carbon (GAC) and later formulated as Powdered Activated Carbon (PAC). The rate of dye uptake was studied with data fitted in to the Lagergren’s pseudo first and second order kinetic models. Justification by the R2 values (0.984) for GACgreater than 0.865 for PAC, low statistical error (SSE%) range of 1.065 - 2.310 and closeness between the experimented and calculated qe values all favored the second order kinetic model. The deviation of the line from the origin further showed that intra-particle transport is not the only rate limiting step. Generally the research supported the manufacturer’s choice of particle size (as GAC and not PAC) for the chosen adsorbate.
文摘Metal-organic frameworks are compounds with a reticulated skeletal structure formed by chemically bonding inorganic and organic units that are widely used in many fields, such as photocatalysis, gas separation and energy storage, because of their unique structures. In this paper, we prepared a metal-organic framework [(<em>μ</em><sub>2</sub>-2-methylimidazolyl)<sub>12</sub>-Zn(ii)<sub>6</sub>-H<sub>18</sub>O<sub>10</sub>]<sub>n</sub>(ZM) with well-developed pores and high specific surface area of MOFs by the solution method. And MOF-derived porous carbon was prepared by the direct charring method in an argon atmosphere using a mixture of ZM, ZM and potassium citrate as carbon precursors. Characterization analysis revealed that the maximum specific surface area of ZMPC-800-1:15 was 2014.97 m<sup>2</sup><span style="white-space:nowrap;">⋅</span>g<sup><span style="white-space:nowrap;">−</span>1</sup>, and the pore size structure was mainly mesoporous. At a current density of 1.0 A<span style="white-space:nowrap;">⋅</span>g<sup><span style="white-space:nowrap;">−</span>1</sup> the specific capacitance of ZMC-800 and ZMPC-800-1:15 was 121.3 F<span style="white-space:nowrap;">⋅</span>g<sup><span style="white-space:nowrap;">−</span>1</sup> and 226.6 F<span style="white-space:nowrap;">⋅</span>g<sup><span style="white-space:nowrap;">−</span>1</sup>, respectively, with a substantial increase of 86.8%. The specific capacitance of ZMPC-800-1:15 decays to 168.8 F<span style="white-space:nowrap;">⋅</span>g<sup><span style="white-space:nowrap;">−</span>1</sup>, with a decay rate of 25.5%, when the current density increases to 10.0 A<span style="white-space:nowrap;">⋅</span>g<sup><span style="white-space:nowrap;">−</span>1</sup>. After 5000 constant current charge/ discharge cycles, the capacitance retention rate was still 96.41%. These results prove that the application of MOF-derived carbon materials in future supercapacitors is very promising.
文摘Activated carbon fiber(ACF)is undoubtedly one of the most significant carbon nanocomposite materials to consider from the perspective of application in adsorption.Compared to other commercial porous storage materials,it offers many benefits.With a fiber-like shape and a clearly defined porosity structure,activated carbon fiber(ACF)is a potential microporous material.In general,synthetic carbon fiber(CF)can be used to commercially make ACF with the inclusion of an activation procedure.High packing density,outstanding volumetric capacity,rapid adsorption/desorption,and ease of handling are some of the unique properties of ACF.The production expenses of ACF are made up of fiber processing costs and activation costs,both of which are comparatively more expensive than those of other activated carbons.Recently,researchers have indicated that the manufacturing of ACF from less expensive precursors might be accomplished by preparing activated carbon(AC)from agricultural wastes.In comparison to synthetic ACF,there were fewer details and publicly accessible sources of information about these natural fiber derived ACF.The cost of processing fiber is higher and shaping fiber into the correct shape is challenging.In this study,social and environmental compliance,economic development,advantages of carbon fiber,and applications of carbon fiber are discussed.
基金Project (50572090) supported by the National Natural Science Foundation of ChinaProject (KP200901) supported by the Fund of the State Key Laboratory of Solidification Processing, China
文摘β-SiC ceramic powders were obtained by pyrolyzing polycarbosilane in vacuum at 800-1200 °C. The β-SiC ceramic powders were characterized by TGA/DSC, XRD and Raman spectroscopy. The dielectric properties of β-SiC ceramic powders were investigated by measuring their complex permittivity by rectangle wave guide method in the frequency range of 8.2-18 GHz. The results show that both real part ε′ and imaginary part ε″ of complex permittivity increase with increasing pyrolysis temperature. The mechanism was proposed that order carbon formed at high temperature resulted in electron relaxation polarization and conductance loss, which contributes to the increase in complex permittivity.
文摘A dual wavelength differential first derivative spectrophotometric method has been developed to standardize the concentration of a saturated aqueous solution of carbon monoxide (CO) as the standard and to identify and to determine CO formed during the microsomal metabolism of xenobiotics in vitro. The method can significantly eliminate the background interference in the assay media and increase the quantitative accuracy and the sensitivity. There is a good linear relationship between CO concentration in the range of 2~10 μmol·L 1 CO and the distance D between the first derivative peak at 415 nm amd valley at 426 nm with r=0.9999(n=5),the regression equation being C (mmol·L 1 )=17.6D 0.4, the detection limit lower than 0.1 μmol·L 1 CO. The average recoveries of CO from the assay system and the sample were 102.1%, RSD=2.9% (n=7) and 79.7%, RSD=6.8% (n=12),respectively. The RSD of within day was 4.4%(n=18),and the RSD of day to day was 6.1%(n=16). By this method, four trihaloanilines and one trihalobenzene were tested, the results showed that only 2,4,5 trifluoroaniline could be converted to CO by the incubation with rat hepatic microsomes, NADPH and oxygen, the ability of phenobarbital or dexamethasone to induce rat hepatic microsomes to catalyze CO formation was 3 or 8 times higher than that of the control.
基金supported by Liaoning Technical Innovation Center of Industrial Ecology and Environmental Engineering,Shandong Provincial Natural Science Foundation(No.ZR2021QB048)Qingdao Postdoctoral Application Research Funded Project(Nos.QDBSH20220201046,QDBSH20230202062)+3 种基金Scientific Research Foundation for Youth Scholars from Qingdao University,National Natural Science Foundation of China(Nos.51473082,51878361)State Key Project of International Cooperation Research(No.2023YFE0201100)the Program for Introducing Talents of Discipline to Universities(“111”plan)the double hundred foreign expert project of Shandong Province,and the high-level discipline program of Materials Science of Shandong Province,China.
文摘Electrocatalytic n-valeraldehyde oxidation reaction was an inexpensive and eco-friendly method to control n-valeraldehyde contamination and produce high value-added octane.However,low-cost and readily available electrocatalysts with high current efficiency were urgently needed.Herein,two-dimensional porous carbon derived from pollen with enlarged interlayer distance was built by alkali activation method,applying in electrocatalytic n-valeraldehyde oxidation reaction.The enlarged interlayer distance was verified by X-ray diffraction(XRD)and high-angle annular dark-field scanning transmission electron microscope(HAADF-STEM).Electrocatalytic experiments consequences showed activated biomass derived carbon possessed a higher electrocatalytic activity and octane selectivity than unactivated catalyst.Systematic tests and in situ infrared experiments demonstrated that enlarged interlayer distance was positively correlated with specific surface area of catalysts,large specific surface area provided abundant absorption sites,facilitated the adsorption for n-valeraldehyde,and further promoted the transformation of n-valeraldehyde to octane.This work also provides a new avenue for creating high-performance electrocatalysts in terms of lattice engineering.
基金the National Natural Science Foundation of China(Nos.U1833202 and 21876117)the Open Research Fund of the School of Chemistry and Chemical Engineering,Henan Normal University(No.2021YB05).
文摘Carbon dots(CDs)have been attracted much attention and widely studied due to their excellent fluorescence(FL)properties,better biocompatibility and outstanding photo/chemical stability.However,the disadvantage of lower quantum yield(QY)still limits its wide application.Herein,we reported a novel and convenient strategy to prepare photo-induced Ag/CDs(p-Ag/CDs)by irradiating the mixed Ag+and hydrophobic CDs(h-CDs)acetone solution with ultraviolet(UV)light.The obtained p-Ag/CDs exhibit a greatly enhanced FL emission together with a blue shift(460 nm)than h-CDs(520 nm).The QY of p-Ag/CDs is measured to be 51.1%,which is 10.4 times higher than that of h-CDs(4.9%),indicating that photo-induced Ag modulation can effectively improve the optical properties of CDs.The mechanisms for the FL enhancement and blue shift of h-CDs are studied in detail.The results prove that the greatly enhanced FL emission is from the generated Ag nanoparticles(AgNPs)by UV light irradiation based on metal-enhanced fluorescence(MEF),and the increased oxygen-contained groups in this process lead to the blue shift in CDs fluorescence.Interestingly,the p-Ag/CDs exhibit higher sensitivity and selectivity for sulfide ions(S2-)detection than that of h-CDs,which have a lower response to S2-.This work not only offers a novel strategy to improve the FL properties of materials but also endows them with new functions and broadens their application fields.
基金The project was sponsored by the National Natural Science Foundation of China(No.20607031)the Scientific Research Foundation for the Returned 0verseas Chinese Scholars,State Education Ministry(2006-331)+1 种基金We are also grateful to Key Natural Science Fundation of South-Central University for Nationalities(YZZ05001)"Youth Chen-Guang Project"of Wuhan Bureau of Science and Technology(20065004116-34)for financial supports.
文摘A series of glucose derivatives have been used as chelating reagents to extract metal ions in supercritical carbon dioxide. With perfluoro-l-octanesulfonic acid tetraethylammonium salt as additive, glucose derivatives were selective for Sr^2+ and Pb^2+ extraction in supercritical carbon dioxide.
基金supported by National Key R&D Program of China(2016YFB0901600)the National Natural Science Foundation of China(51772313 , U1830113 and 51802334)
文摘Lithium-sulfur batteries(Li–S batteries) are promising candidates for the next generation high-energy rechargeable Li batteries due to their high theoretical specific capacity(1672 m Ahg-1) and energy density(2500 Wh kg-1). The commercialization of Li–S batteries is impeded by several key challenges at cathode side, e.g. the insulating nature of sulfur and discharged products(Li2S 2 and Li2S), the solubility of long-chain polysulfides and volume variation of sulfur cathode upon cycling. Recently, the carbonbased derivatives from metal-organic frameworks(MOFs) has emerged talent in their utilization as cathode hosts for Li–S batteries. They are not only highly conductive and porous to enable the acceleration of Li +/e-transfer and accommodation of volumetric expansion of sulfur cathode during cycling, but also enriched by controllable chemical active sites to enable the adsorption of polysulfides and promotion of their conversion reaction kinetics. In this review, based on the types of MOFs(e.g. ZIF-8, ZIF-67, Prussian blue, Al-MOF, MOF-5, Cu-MOF, Ni-MOF), the synthetic methods, formation process and morphology, structural superiority of MOFs-derived carbon frameworks along with their electrochemical performance as cathode host in Li–S batteries are summarized and discussed.
文摘The conductivity of polymer-derived SiOCN ceramics exhibited an Arrhenius dependence on pyrolysis temperature, with the activation energy of ~3.95 eV. The formation and structure change of the free carbon phase were detected by means of electron spin resonance spectroscopy and X-ray photoelectron spectroscopy. It reveals that the number of dangling bonds on the free carbon is increased as pyrolysis temperature increases, with the activation energy of ~3.87 eV. So it is demonstrated that the pyrolysis-temperature induced increase in the conductivity is mainly attributed to the increase of dangling on the graphite-like carbon.
文摘In the process of exploration and development of oil and gas fields, the acidic environment of oil reservoir, production and transport processes cause corrosion of pipelines and equipment, resulting in huge economic losses and production safety risks. Corrosion inhibitors were widely used in oil industry because of simple operation process and economical. In this study, three environmentally friendly corrosion inhibitors were synthesized based on the natural polysaccharide chitosan. Corrosion inhibition of three dendritic chitosan derivatives (We name them BH, CH and DH) on mild steel in 1 mol/L HCl solution with natural ventilation system was evaluated by weight loss experiment, electrochemical analysis and surface morphology characterization. The experimental results showed that when the three dendritic chitosan derivatives added in the corrosive medium were 500 mg L^(−1), the corrosion inhibition efficiencies were all more than 80%. Based on quantum chemical calculation, inhibition mechanisms of three dendritic chitosan derivatives were investigated according to molecular structures. The results showed that the benzene ring, Schiff base and N atom contained in the molecule were the active centers of electron exchange, which were more likely to form a film on the carbon steel surface, thereby slowing or inhibiting corrosion. The results also predicted the corrosion inhibition effect BH > DH > CH, which was consistent with the experimental conclusion.