We present a study on the second-order resonant interaction between the ring current protons with Whistler-mode waves propagating near the quasi electrostatic limit following the previous second-order resonant theory....We present a study on the second-order resonant interaction between the ring current protons with Whistler-mode waves propagating near the quasi electrostatic limit following the previous second-order resonant theory. The diffusion coefficients are proportional to the electric field amplitude E, much greater than those for the regular first-order resonance, which are proportional to the electric field amplitudes square E^2. Numerical calculations for the pitch angle scattering are performed for typical energies of protons Ek = 50 keV and 100 keV at locations L = 2 and L = 3.5. The timescale for the loss process of protons by the Whistler waves is found to approach one hour, comparable to that by the EMIC waves, suggesting that Whistler waves may also contribute significantly to the ring current decay under appropriate conditions.展开更多
The quasi-pure pitch-angle scattering of energetic electrons driven by field-aligned propagating whistler mode waves during the 9~15 October 1990 magnetic storm at L≈ 3 ~ 4 is studied, and numerical calculations fo...The quasi-pure pitch-angle scattering of energetic electrons driven by field-aligned propagating whistler mode waves during the 9~15 October 1990 magnetic storm at L≈ 3 ~ 4 is studied, and numerical calculations for energetic electrons in gyroresonance with a band of frequency of whistler mode waves distributed over a standard Gaussian spectrum is performed. It is found that the whistler mode waves can efficiently drive energetic electrons from the larger pitchangles into the loss cone, and lead to a flat-top distribution during the main phase of geomagnetic storms. This result perhaps presents a feasible interpretation for observation of time evolution of the quasi-isotropic pitch-angle distribution by Combined Release and Radiation Effects Satellite (CRRES) spacecraft at L ≈ 3 ~ 4.展开更多
The pitch-angle distribution of energetic particles is important for space physics studies on magnetic storm and particle acceleration.A‘pin-hole’imaging structure is built with the‘pin-hole’technique and a positi...The pitch-angle distribution of energetic particles is important for space physics studies on magnetic storm and particle acceleration.A‘pin-hole’imaging structure is built with the‘pin-hole’technique and a position sensitive detector,which can be used to measure the pitch angle distribution of energetic particles.To calibrate the angular response of the‘pin-hole’imaging structure,special experiment facilities are needed,such as the particle accelerator with special design.The features of this kind of particle accelerator are:1)The energy range of the outgoing particles should be mid-energy particles(tens keV to several hundred keV);2)the particle flux should be consistent in time-scale;3)the directions of the outgoing particles should be the same and 4)the particle number within the spot should be low enough.In this paper,a method to calibrate the angular response of the‘pin-hole’imaging structure by the90Sr/90Y β source with a collimator is introduced and simulated by Geant4 software.The result of the calibration with the collimated β source is in accord with the Geant4 simulations,which verifies the validity of this method.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 40774078, 40404012, 40474064 and 40674076, and the Visiting Scholar Foundation of State Key Laboratory for Space Weather, Chinese Academy Sciences.
文摘We present a study on the second-order resonant interaction between the ring current protons with Whistler-mode waves propagating near the quasi electrostatic limit following the previous second-order resonant theory. The diffusion coefficients are proportional to the electric field amplitude E, much greater than those for the regular first-order resonance, which are proportional to the electric field amplitudes square E^2. Numerical calculations for the pitch angle scattering are performed for typical energies of protons Ek = 50 keV and 100 keV at locations L = 2 and L = 3.5. The timescale for the loss process of protons by the Whistler waves is found to approach one hour, comparable to that by the EMIC waves, suggesting that Whistler waves may also contribute significantly to the ring current decay under appropriate conditions.
基金National Natural Science Foundation of China(Nos.40774078,40404012,40674076,40474064)the Visiting Scholar Foundation of State Key Laboratory of Space Weather,Chinese Academy of Sciences
文摘The quasi-pure pitch-angle scattering of energetic electrons driven by field-aligned propagating whistler mode waves during the 9~15 October 1990 magnetic storm at L≈ 3 ~ 4 is studied, and numerical calculations for energetic electrons in gyroresonance with a band of frequency of whistler mode waves distributed over a standard Gaussian spectrum is performed. It is found that the whistler mode waves can efficiently drive energetic electrons from the larger pitchangles into the loss cone, and lead to a flat-top distribution during the main phase of geomagnetic storms. This result perhaps presents a feasible interpretation for observation of time evolution of the quasi-isotropic pitch-angle distribution by Combined Release and Radiation Effects Satellite (CRRES) spacecraft at L ≈ 3 ~ 4.
基金supported by the National Natural Science Foundation of China(Grant Nos.40704026 and 41374167)
文摘The pitch-angle distribution of energetic particles is important for space physics studies on magnetic storm and particle acceleration.A‘pin-hole’imaging structure is built with the‘pin-hole’technique and a position sensitive detector,which can be used to measure the pitch angle distribution of energetic particles.To calibrate the angular response of the‘pin-hole’imaging structure,special experiment facilities are needed,such as the particle accelerator with special design.The features of this kind of particle accelerator are:1)The energy range of the outgoing particles should be mid-energy particles(tens keV to several hundred keV);2)the particle flux should be consistent in time-scale;3)the directions of the outgoing particles should be the same and 4)the particle number within the spot should be low enough.In this paper,a method to calibrate the angular response of the‘pin-hole’imaging structure by the90Sr/90Y β source with a collimator is introduced and simulated by Geant4 software.The result of the calibration with the collimated β source is in accord with the Geant4 simulations,which verifies the validity of this method.