期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Variable slip window technology in transition detection on pitching airfoil 被引量:3
1
作者 Binbin WEI Yongwei GAO +1 位作者 Dong LI Lei DENG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第4期1166-1180,共15页
In the pitching motion,the unsteady transition and relaminarization position plays an important role in the dynamic characteristics of the airfoil.In order to facilitate the computer to automatically and accurately ca... In the pitching motion,the unsteady transition and relaminarization position plays an important role in the dynamic characteristics of the airfoil.In order to facilitate the computer to automatically and accurately calculate the position of the transition and relaminarization,a Variable Slip Window Technology(VSWT)suitable for airfoil dynamic data processing was developed using the S809 airfoil experimental data in this paper and two calculation strategies,i.e.,global strategy and single point strategy,were proposed:global strategy and single point strategy.The core of the VSWT is the selection of the window function h and the parameters setting in the h function.The effect of the VSWT was evaluated using the dimensionless pulse strength value(INB),which can be used to evaluate the signal characteristics,of the root mean square(RMS)value of the fluctuating pressure.It is found that:the h function characteristics have a significant influence on the VSWT.The suitable functions are Hn function constructed in this paper and step function.For the left boundary of the magnified area,the step function can obtain the largest INB value,but the robustness is not good.The H1 function(Gaussian-like function,n=1)can show higher robustness while ensuring a large INB value.The two computing strategies,which are single point strategy and global strategy,have their own advantages and disadvantages.The former strategy,that is the single point strategy,can achieve a higher INB value,but the RMS magnification at the feature position needs to be known in advance.Although the INB value obtained by the latter strategy,that is the global strategy,is slightly smaller than the calculation results of the former strategy,it is not necessary to know the RMS magnification at the feature position in advance.So the global strategy has better robustness.The experimental data of NACA0012 airfoil was used to further validate the developed VSWT in this paper,and the results show that the VSWT developed in this paper can still double the INB value of the transition/relaminarization position.The VSWT developed in this paper has certain practicability,which is convenient for the computer to automatically determine the transition/relaminarization characteristics. 展开更多
关键词 Data processing Dynamic characteristics pitching airfoil Transition and relaminarization Variable slip window technology(VSWT)
原文传递
Flow Confinement Effects on the Wake Structure behind a Pitching Airfoil: A Numerical Study Using an Immersed Boundary Method
2
作者 Ali Akbar Hosseinjani Ali Ashrafizadeh 《Journal of Bionic Engineering》 SCIE EI CSCD 2017年第1期88-98,共11页
The flow patterns and wake structures behind a pitching airfoil in an un-bounded domain have been studied extensively. In contrast, the flow phenomena associated with a pitching airfoil near a solid boundary have not ... The flow patterns and wake structures behind a pitching airfoil in an un-bounded domain have been studied extensively. In contrast, the flow phenomena associated with a pitching airfoil near a solid boundary have not been adequately studied or reported. This paper aims at filling this research gap by considering the flow confinement effects on the flow pattern around a pitching airfoil. To achieve this goal, the flow fields around a flapping airfoil in un-bounded, bounded and semi-bounded domains are studied and compared. Numerical simulations are carried out at a fixed Reynolds number, Re = 255, and at a fixed oscillation frequency corresponding to St = 0.22. An accurate immersed boundary method is employed to calculate the unsteady flow fields around the airfoil at various flapping amplitudes. It is argued that two flow mechanisms, here called "the interaction effect" and "the induced reverse flow effect" are responsible for the variations of the flow field due to the presence of a nearby solid boundary. 展开更多
关键词 immersed boundary method pitching airfoil vortex street induced momentum aligned vortex
原文传递
Investigation of steady plasma actuation effect on aerodynamic coefficients of oscillating airfoil at low Reynolds number 被引量:1
3
作者 Arash Mahboubidoust Abas Ramiar Morteza Dardel 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2017年第4期185-198,共14页
In this work, numerical study of two dimensional laminar incompressible flow around an oscillating NACA0012 airfoil is proceeded using the open source code Open FOAM. Oscillatory motion types including pitching and fl... In this work, numerical study of two dimensional laminar incompressible flow around an oscillating NACA0012 airfoil is proceeded using the open source code Open FOAM. Oscillatory motion types including pitching and flapping are considered. Reynolds number for these motions is assumed to be 12000 and effects of these motions and also different unsteady parameters such as amplitude and reduced frequency on aerodynamic coefficients are studied. For flow control on airfoil, dielectric barrier discharge plasma actuator is used in two different positions on airfoil and its effect is compared for the two types of considered oscillating motions. It is observed that in pitching motion, imposing plasma leads to an improvement in aerodynamic coefficients, but it does not have any positive effect on flapping motion.Also, for the amplitudes and frequencies investigated in this paper, the trailing edge plasma had a more desirable effect than other positions. 展开更多
关键词 airfoil Flapping Oscillating Plasma pitching
下载PDF
Fourier time spectral method for subsonic and transonic flows
4
作者 Lei Zhan Feng Liu Dimitri Papamoschou 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第3期380-396,共17页
The time accuracy of the exponentially accurate Fourier time spectral method(TSM) is examined and compared with a conventional 2nd-order backward difference formula(BDF) method for periodic unsteady flows. In part... The time accuracy of the exponentially accurate Fourier time spectral method(TSM) is examined and compared with a conventional 2nd-order backward difference formula(BDF) method for periodic unsteady flows. In particular, detailed error analysis based on numerical computations is performed on the accuracy of resolving the local pressure coefficient and global integrated force coefficients for smooth subsonic and non-smooth transonic flows with moving shock waves on a pitching airfoil. For smooth subsonic flows, the Fourier TSM method offers a significant accuracy advantage over the BDF method for the prediction of both the local pressure coefficient and integrated force coefficients. For transonic flows where the motion of the discontinuous shock wave contributes significant higherorder harmonic contents to the local pressure fluctuations,a sufficient number of modes must be included before the Fourier TSM provides an advantage over the BDF method.The Fourier TSM, however, still offers better accuracy than the BDF method for integrated force coefficients even for transonic flows. A problem of non-symmetric solutions for symmetric periodic flows due to the use of odd numbers of intervals is uncovered and analyzed. A frequency-searching method is proposed for problems where the frequency is not known a priori. The method is tested on the vortex shedding problem of the flow over a circular cylinder. 展开更多
关键词 Fourier time spectral method(TSM) pitching airfoil Transonic flow Non-symmetric solution Computational efficiency Vortex shedding flow Frequency search
下载PDF
Individual influence of pitching and plunging motions on flow structures over an airfoil during dynamic stall 被引量:4
5
作者 Zhenyao LI Lihao FENG Jinjun WANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第3期840-851,共12页
The individual influence of pitching and plunging motions on flow structures is studied experimentally by changing the phase lag between the geometrical angle of attack and the plunging angle of attack.Five phase lags... The individual influence of pitching and plunging motions on flow structures is studied experimentally by changing the phase lag between the geometrical angle of attack and the plunging angle of attack.Five phase lags are chosen as the experimental parameters,while the Strouhal number,the reduced frequency and the Reynolds number are fixed.During the motion of the airfoil,the leading edge vortex,the reattached vortex and the secondary vortex are observed in the flow field.The leading edge vortex is found to be the main flow structure through the proper orthogonal decomposition.The increase of phase lag results in the increase of the leading edge velocity,which strongly influences the leading edge shear layer and the leading edge vortex.The plunging motion contributes to the development of the leading edge shear layer,while the pitching motion is the key reason for instability of the leading edge shear layer.It is also found that a certain increase of phase lag,around 34.15°in this research,can increase the airfoil lift. 展开更多
关键词 Dynamic stall Leading edge vortex Phase lag pitching and plunging airfoil Vortex dynamics
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部