Bipolar electrochemistry is used to produce a linear potential gradient across a bipolar electrode(BPE),providing direct access to the anodic and cathodic reactions under a wide range of applied potentials.The occurre...Bipolar electrochemistry is used to produce a linear potential gradient across a bipolar electrode(BPE),providing direct access to the anodic and cathodic reactions under a wide range of applied potentials.The occurrence of pitting corrosion,crevice corrosion,and general corrosion on type 2205 duplex stainless steel(DSS 2205)BPE has been observed at room temperature.The critical pit depth of 10-20μm with a55%-75% probability of pits developing into stable pits at potential from+0.9 to+1.2 V vs.OCP(open circuit potential)are measured.All pit nucleation sites are either within ferritic grains or at the interface between austenite and ferrite.The critical conditions for pitting and crevice corrosion are discussed with Epit(critical pitting potential)and Ecre(critical crevice potential)decreasing from 0.87 and 0.80 V vs.OCP after150 s of exposure to 0.84 and 0.76 V vs.OCP after 900 s of exposure,respectively.Pit growth kinetics under different applied bipolar potentials and exposure times have been obtained.The ferrite is shown to be more susceptible to general dissolution.展开更多
基金supported by the Science&Technology Fundamental Resources Investigation Program(No.2022FY10300)The National Natural Science Foundation of China(No.U22B2065)support of the Henry Royce Institute for access to the Keyence laser scanning confocal microscope and the ZEISS Sigma FEG-SEM at Royce@Manchester(No.EP/R00661X/1)。
文摘Bipolar electrochemistry is used to produce a linear potential gradient across a bipolar electrode(BPE),providing direct access to the anodic and cathodic reactions under a wide range of applied potentials.The occurrence of pitting corrosion,crevice corrosion,and general corrosion on type 2205 duplex stainless steel(DSS 2205)BPE has been observed at room temperature.The critical pit depth of 10-20μm with a55%-75% probability of pits developing into stable pits at potential from+0.9 to+1.2 V vs.OCP(open circuit potential)are measured.All pit nucleation sites are either within ferritic grains or at the interface between austenite and ferrite.The critical conditions for pitting and crevice corrosion are discussed with Epit(critical pitting potential)and Ecre(critical crevice potential)decreasing from 0.87 and 0.80 V vs.OCP after150 s of exposure to 0.84 and 0.76 V vs.OCP after 900 s of exposure,respectively.Pit growth kinetics under different applied bipolar potentials and exposure times have been obtained.The ferrite is shown to be more susceptible to general dissolution.