Since 2007,the large-scale green tide caused by Ulva prolifera(U.prolifera)have occurred as a recurrent phenomenon in the southern Yellow Sea of China.Field surveys and satellite remote sensing showed that the small s...Since 2007,the large-scale green tide caused by Ulva prolifera(U.prolifera)have occurred as a recurrent phenomenon in the southern Yellow Sea of China.Field surveys and satellite remote sensing showed that the small scattered patches of green tide algae were first observed along the Porphyra agriculture area of the Subei Shoal in late April.In this study,we attempted to identify the role of eutrophication in the origin of the green tide in the Subei Shoal and its adjacent area.Subei Shoal and its adjacent area are characterized by rich nutrients,especially NO_(3)^(-)-N,NH_(4)^(+)-N,PO_(4)^(3-)-P,and other bioavailable components(such as urea-N and amino acids).In the spring of 2017,the average concentrations of NO_(3)^(-)-N were 19.01±11.01μmolL^(-1),accounting for 86.68%of the dis-solved inorganic nitrogen(DIN).In addition,the average concentration of NH4^(+)-N was 2.51±1.60μmolL^(-1).PO_(4)^(3-)-P had an average concentration of 0.14±0.13μmolL-1.The average concentrations of urea-N and total hydrolyzed amino acids(THAA)were 1.73±1.36μmolL^(-1)and 1.33±0.80μmolL^(-1),respectively.Rich nutritive substances play a key role in the rapid production of U.prolifera and make the Jiangsu coastal water an incubator for green tide.展开更多
In this study,we estimate the absolute vertical land motions at three tidal stations with collocated Global Navigation Satellite System(GNSS)receivers over French Polynesia during the period 2007-2020,and obtain,as an...In this study,we estimate the absolute vertical land motions at three tidal stations with collocated Global Navigation Satellite System(GNSS)receivers over French Polynesia during the period 2007-2020,and obtain,as ancillary results,estimates of the absolute changes in sea level at the same locations.To verify our processing approach to determining vertical motion,we first modeled vertical motion at the International GNSS Service(IGS)THTI station located in the capital island of Tahiti and compared our estimate with previous independent determinations,with a good agreement.We obtained the following estimates for the vertical land motions at the tide gauges:Tubuai island,Austral Archipelago-0.92±0.17 mm/yr,Vairao village,Tahiti Iti:-0.49±0.39 mm/yr,Rikitea,Gambier Archipelago-0.43±0.17 mm/yr.The absolute variations of the sea level are:Tubuai island,Austral Archipelago 5.25±0.60 mm/yr,Vairao village,Tahiti Iti:3.62±0.52 mm/yr,Rikitea,Gambier Archipelago 1.52±0.23 mm/yr.We discuss these absolute values in light of the values obtained from altimetric measurements and other means in French Polynesia.展开更多
In 2022,Yellow Sea green tide caused by Ulva prolifera reached a historic minimum and the coastal areas of Shandong Peninsula were less affected.However,the largest amount of seaweed biomass has been washed ashore on ...In 2022,Yellow Sea green tide caused by Ulva prolifera reached a historic minimum and the coastal areas of Shandong Peninsula were less affected.However,the largest amount of seaweed biomass has been washed ashore on Lianyungang and Rizhao coasts since 2015.We studied the development pattern of Yellow Sea green tide in 2022,and analyzed the key environmental factors on the growth and drifting,then discussed the possible reasons that resulted in the massive stranding of green tide biomass in Lianyungang and Rizhao.Results show under the combined influence of the east to southeast winds and currents with shoreward anomalies,green tide drifted to the coastal waters between Shandong and Jiangsu provinces and the distribution areas located westward compared with previous years(2008–2021).Floating U.prolifera rafts from the coastal waters of Binhai and Sheyang drifted continuously into the coastal waters of Lianyungang and Rizhao,providing important supplements for Yellow Sea green tide.Because green tide in 2022 distributed close to the coastal waters,the abundant nutrients might support their continuous high growth rate.In addition,the amount of rainfall around Shandong Peninsula from late June to early July were significantly higher than in previous years,which might promote the development of green tide to some extent.展开更多
The tide plays a pivotal role in the ocean,affecting the global ocean circulation and supplying the bulk of the energy for the global meridional overturning circulation.To further investigate internal tides and their ...The tide plays a pivotal role in the ocean,affecting the global ocean circulation and supplying the bulk of the energy for the global meridional overturning circulation.To further investigate internal tides and their impacts on circulation,it is imperative to incorporate tidal forcing into the eddy-resolving global ocean circulation model.In this study,we successfully incorporated explicit tides(eight major constituents)into a global eddy-resolving general ocean circulation model and evaluated its tidal simulation ability.We obtained harmonic constants by analyzing sea surface height through tidal harmonic analysis and compared them with the analysis data Topex Poseidon Cross-Overs v9(TPXO9),the open ocean tide dataset from 102 open-ocean tide observations,and tide gauge stations from World Ocean Circulation Experiment.The results demonstrated that the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics/Institute of Atmospheric Physics(LASG/IAP)Climate System Ocean Model 3.0(LICOM3.0)effectively simulated tides,with errors predominantly occurring in nearshore regions.The tidal amplitude simulated in LICOM3.0 was greater than that of TPXO9,and these high-amplitude areas exhibited greater errors.The amplitude error of the M_(2) constituent was larger,while the phase error of the K_(1) constituent was more significant.Furthermore,we further compared our results with those from other models.展开更多
Ulva prolifera is the causative species of the annually occurring large-scale green tides in China since 2007.Its specific biological features on reproductivity strategies,as well as intra-species genetic diversity,ar...Ulva prolifera is the causative species of the annually occurring large-scale green tides in China since 2007.Its specific biological features on reproductivity strategies,as well as intra-species genetic diversity,are still largely unknown,especially at the genome level,despite their importance in understanding the formation and outbreak of massive green tides.In the present study,the restriction site-associated DNA genotyping approach(2b-RAD)was adopted to identify the genome-wide single-nucleotide polymorphisms(SNPs)of 54 individual thalli including samples collected from Subei Shoal in 2019 and Qingdao coast from 2019 to 2021.SNPs genotype results revealed that most of the thalli in 2019 and 2020 were haploid gametophytes,while only half of the thalli were gametophytes in 2021,indicating flexibility in the reproductive strategies for the formation of the green tides among different years and the dominance of asexual and vegetative reproductive mode for the floating period.Besides,population analysis was conducted,and it revealed a very low genetic diversity among samples from Subei Shoal and the Qingdao coast in the same year and a higher divergence among samples in different years.The results showed the efficiency of 2b-RAD in the exploration of SNPs in U.prolifera and provided the first genome-wide scale evidence for the origin of the large-scale green tides on the Qingdao coast.This study improved our understanding of the reproductive strategy and genetic diversity of the green tide causative species and will help further reveal the biological causes of the green tide in China.展开更多
The three-dimensional displacements caused by ocean loading effects are significant enough to impact spatial geodetic measurements on sub-daily or longer timescales,particularly in the vertical direction.Currently,mos...The three-dimensional displacements caused by ocean loading effects are significant enough to impact spatial geodetic measurements on sub-daily or longer timescales,particularly in the vertical direction.Currently,most tide models incorporate the distribution of vertical displacement loading tides;however,their accuracy has not been assessed for the equatorial and Indian Ocean regions.Global Positioning System(GPS)observations provide high-precision data on sea-level changes,enabling the assessment of the accuracy and reliability of vertical displacement tide models.However,because the tidal period of the K_(2) constituent is almost identical to the orbital period of GPS constellations,the estimation of the K_(2) tidal constituent from GPS observations is not satisfactory.In this study,the principle of smoothness is employed to correct the systematic error in K_(2) estimates in GPS observations through quadratic fitting.Using the adjusted harmonic constants from 31 GPS stations for the equatorial and Indian Ocean,the accuracy of eight major constituents from five global vertical displacement tide models(FES2014,EOT11a,GOT4.10c,GOT4.8,and NAO.99b)is evaluated for the equatorial and Indian Ocean.The results indicate that the EOT11a and FES2014 models exhibit higher accuracy in the vertical displacement tide models for the equatorial and Indian Ocean,with root sum squares errors of 2.29 mm and 2.34 mm,res-pectively.Furthermore,a brief analysis of the vertical displacement tide distribution characteristics of the eight major constituents for the equatorial and Indian Ocean was conducted using the EOT11a model.展开更多
Since 2007,the Yellow Sea green tide has broken out every summer,causing great harm to the environment and society.Although satellite remote sensing(RS)has been used in biomass research,there are several shortcomings,...Since 2007,the Yellow Sea green tide has broken out every summer,causing great harm to the environment and society.Although satellite remote sensing(RS)has been used in biomass research,there are several shortcomings,such as mixed pixels,atmospheric interference,and difficult field validation.The biomass of green tide has been lacking a high-precision estimation method.In this study,high-resolution unmanned aerial vehicle(UAV)RS was used to quantitatively map the biomass of green tides.By utilizing experimental data from previous studies,a robust relationship was established to link biomass to the red-green-blue floating algae index(RGB-FAI).Then,the lab-based model for green tide biomass from visible images taken by the UAV camera was developed and validated by field measurements.Re sults show that the accurate and cost-effective method is able to estimate the green tide biomass and its changes in given local waters of the near and far seas.The study provided an effective complement to the traditional satellite RS,as well as high-precision quantitative techniques for decision-making in disaster management.展开更多
Many studies point out that weather conditions involving temperature, wind power, monsoon transform, air pressure, sea condition, tide, ocean current, salinity, eutrophic environment and so on are key factors causing ...Many studies point out that weather conditions involving temperature, wind power, monsoon transform, air pressure, sea condition, tide, ocean current, salinity, eutrophic environment and so on are key factors causing Red Tide. In the red tide high frequency areas of the South China Sea, the eutrophic environment of sea water has already existed, so the key elements such as meteorological and hydrological conditions play an importance role in the occurrence of red tide. The atmospheric circulation maintenance and variation decide whether meteorological phenomena, and hydrological key elements stabilize or change. Moreover, the red tide organisms' breeding from the initial stage to the blooming reproduction stage, until reaching the biological density of the red tide, generally takes 4 - 5 days. In the paper, the red tide examples are analyzed in the past 10 years, and the weather circulation situation and hydro-meteorological key elements of it are counted to find the previous circulation mode and bring out important factors inducing the blooming of red tide. The predicted result in 2003 according to this method was satisfactory.展开更多
The annual frequency of red tides from 1977 to 2012 and the monthly frequency of red tides from 2001 to 2012 in China seas were used to establish the time series of red tide annual frequency and monthly frequency, res...The annual frequency of red tides from 1977 to 2012 and the monthly frequency of red tides from 2001 to 2012 in China seas were used to establish the time series of red tide annual frequency and monthly frequency, respectively. The annual frequency fit well with time segments revealed by piecewise linear regression analysis. The seasonal maximum of monthly frequency was in May (-18.22), and the stochastic volatility tended to increase gradually with time series, with peak values occurring from May to July. Holt exponential smoothing and Holt-winter exponential smoothing were used to predict red tide annual and monthly frequencies, which revealed that the annual frequency of red tides would rise slowly by one time from 2013 to 2020, and that red tides would mainly occur from May to July in 2013-2016 with a peak value of about 25 times in May.展开更多
Most of the flood from the wide inner lowland plain discharges through tide locks on coast, and the influence of tidal flat inning projects on the tide lock drainage must be solved by seawall line choice. Taking the C...Most of the flood from the wide inner lowland plain discharges through tide locks on coast, and the influence of tidal flat inning projects on the tide lock drainage must be solved by seawall line choice. Taking the Cangdongpian inning area on the west side of Tiaozini Sand as a case study, the paper analyzed the compages and validity of ebb tide water to maintain the flood discharge creek below the tide lock for different projects of seawall line. Result indicates that a rational seawall line program has little influence on the flood discharge of lock during the mean tide or general spring tides, but has certain influences during a storm surge or an extreme spring tide in autumn. However it could be resolved by several times of artificial scour on the creek.展开更多
The analyses of a data series obtained during TOGA- COARE show the existence of remarkable semi-diurnal intemal tides in the western equatorial Pacific Ocean around 1°45'S, 156°E. Some characteristic parame...The analyses of a data series obtained during TOGA- COARE show the existence of remarkable semi-diurnal intemal tides in the western equatorial Pacific Ocean around 1°45'S, 156°E. Some characteristic parameters of the internal tides are vertical wavenumber -1.6×10^-3 m^-1, horizontal wavenumber (wavelength) 3.3×10^-2 km^-1 (210 km), vertical propagation speed -3.8 cm/s and horizontal propagation speed 2.0 m/s. The waveforms propagate downwards slantingly, that is, the wave energy transfers upwards slantingly. Depth-distribution of the'rotary spectral levels is a saddle-shape. The depths of the trough and the deeper peaks are almost coincident with those of the south boundaries of the South Equatorial Current and the Equatorial Undercurrent, respectively. The mean orientation of the rotary spectral ellipse changes with depth: 30° from north to east at 40 m, and changes into 14° from east to south at 324 m, and generally, it points to northeastward, which indicates "that waves come from the southwest.展开更多
Tidal data of Tanggu marine environment monitoring stations for 59 years (1950-2008) was processed by using harmonic analysis, harmonic constants curves were discussed. And by using FFT spectral analysis periodicity...Tidal data of Tanggu marine environment monitoring stations for 59 years (1950-2008) was processed by using harmonic analysis, harmonic constants curves were discussed. And by using FFT spectral analysis periodicity and causation of its harmonic constants were analyzed. Alter astronomic tide signal was eliminated, residual water level was decomposed by using FFT spectral analysis, and then we got the periodic variation of mean residual water level over the past 50 years and discussed mean sea level changing trends of Tianjin offshore. The results show that variety of amplitude of M2 tidal constituent reveals 20 years, 4-6 years, 2-3-year periods, and it was obviously influenced by engineering construction since reform and opening age. Residual water level fluctuations reveal 20 years, 5-6 years, 2-3 years and 1 year periods. Sea level of Tianjin offshore displays a progressive ascending trend with rate about 3.4mm/a, which was influenced mainly by sea level rise and land subsidence.展开更多
A 3-D unstructured-grid, finite-volume coastal ocean model (FVCOM) was used to study the tides and tidal currents in the Lianzhou Bay and adjacent areas. The simulation results were in good agreement with observatio...A 3-D unstructured-grid, finite-volume coastal ocean model (FVCOM) was used to study the tides and tidal currents in the Lianzhou Bay and adjacent areas. The simulation results were in good agreement with observations. The co-tidal maps of K1 , O1 , and M2 indicated that K1 and O1 were mostly standing waves outside the Lianzhou Bay, while M2 had a largely propagating character. However, all three constituents became propagating waves when entering the Lianzhou Bay, due to the shallow waters. The tidal current ellipses showed the characters of K1 , O1 , and M2 constituents: K1 and O1 were rotating outside the bay, but rectilinear along the water channels inside the bay; M2 was mostly rectilinear over the whole area. The tidal-induced residual current shows the flow was divided into two branches by the Guantouling Peninsula: one turned to flow west; the other was blocked by the southern boundary of the peninsula, creating a clockwise circulation. In Lianzhou Bay, there were two circulation systems, a cyclonic one at the top of the bay and an anti-cyclonic at the mouth.展开更多
20-day in-situ ADCP current and CTD data are used to investigate the characteristics and energy of the internal tides in the northern South China Sea (NSCS). The results show that the O1, K1, M2 and S2 constituents ...20-day in-situ ADCP current and CTD data are used to investigate the characteristics and energy of the internal tides in the northern South China Sea (NSCS). The results show that the O1, K1, M2 and S2 constituents of internal tides are energetic and diurnal constituents (O1 and K1) are dominating. In the observational period, the current vectors of these four constituents all rotate clockwise and the maximum semi-major axe of internal tidal ellipses is more than 14 cm/s. The variation of ocean temperature shows that the internal tides present obvious quasi-diurnal oscillation and the average amplitude reaches 50 m. Furthermore, these internal tides carry high energy and appear to be intermittent. The maximum values of KE (PE) during the observational period are up to 2 (3.5) k J/m^2 for diurnal internal tides, and up to 1 (1.5) k J/m^2 for semidiurnal internal tides.展开更多
The development of the phytoplankton community was studied in the Jiaozhou Bay during the spring to neap tide in August2001, through three cruises and a 15 d continuous observation. This investigation indicates that d...The development of the phytoplankton community was studied in the Jiaozhou Bay during the spring to neap tide in August2001, through three cruises and a 15 d continuous observation. This investigation indicates that diatom cell abundance increasedsharply following the end of a spring tide, from 9 cells/cm3 to a peak of 94 cells/cm3. The dominant species composition andabundance show a quick species sequence from spring to neap tide, and the dominant species at the start phase is Skeletomenacostatum, then changes to Chaetoceros curvisetus, finally it changes to Eucampia zodiacus. Silicate concentration increasesduring spring tide, as a result of nutrient replenishment from the watersediment interface, its initial average concentration inneap tide is 1.39 mmol/dm3 and reached the peak average concentration of 8.40 mmol/dm3 in spring tide. But the nitrogenconcentration dropped due to dilution by the low nitrogen seawater from the Huanghai Sea, its initial average concentration inneap tide is 67 mmol/dm3 and decreased to the average concentration of 54 mmol/dm3 in spring tide. The degree of siliconlimitation was decreased and phytoplankton, especially diatoms, responds immediately after nutrient replenishment in thewater column. Skeletonmea costatum, as one of the dominant species in the Jiaozhou Bay, shows a quicker response tonutrient availability than Eucampia zodiacus and Chaetoceros curvisetus. It is proposed that dominant species compositionand water column stability synchronously determine the development of phytoplankton summer blooms in the Jiaozhou bay.展开更多
Since 2015, a novel green tide has been recurring in the coastal areas of Qinhuangdao at the western coast of the Bohai Sea in China, threatening the environment and ecosystem of the Beidaihe seaside holiday resort al...Since 2015, a novel green tide has been recurring in the coastal areas of Qinhuangdao at the western coast of the Bohai Sea in China, threatening the environment and ecosystem of the Beidaihe seaside holiday resort along the coast. Micro-propagules of the green algae including gametes, spores, micro-germlings and micro-vegetative fragments play an important role in the formation of green tides. They serve as a "seed source" of green macroalgae, and their distributions could reflect and influence the "algae source" of green tides. In this study,monthly surveys in the inshore and offshore areas of the Qinhuangdao coast were conducted from April to September 2016 and in January 2017 to investigate the tempo-spatial distribution patterns and the biomass variations of the green algae micro-propagules. The obtained results show that micro-propagules were mainly distributed in the inshore areas with a significantly decreasing abundance towards offshore areas. Their biomass was highest in July and August, and lowest in winter. The areas that were affected by the green tides showed a remarkably higher abundance of micro-propagules compared to other areas. These micro-propagules could serve as the "seed" source of green tides. Their distribution patterns indicate that the green tide in the coastal areas of Qinhuangdao originated locally.展开更多
基金supported by the Joint Fund between NSFC and Shandong Province(No.U1906210)the China National Key Research and Development Program(No.2016YFC1402101).
文摘Since 2007,the large-scale green tide caused by Ulva prolifera(U.prolifera)have occurred as a recurrent phenomenon in the southern Yellow Sea of China.Field surveys and satellite remote sensing showed that the small scattered patches of green tide algae were first observed along the Porphyra agriculture area of the Subei Shoal in late April.In this study,we attempted to identify the role of eutrophication in the origin of the green tide in the Subei Shoal and its adjacent area.Subei Shoal and its adjacent area are characterized by rich nutrients,especially NO_(3)^(-)-N,NH_(4)^(+)-N,PO_(4)^(3-)-P,and other bioavailable components(such as urea-N and amino acids).In the spring of 2017,the average concentrations of NO_(3)^(-)-N were 19.01±11.01μmolL^(-1),accounting for 86.68%of the dis-solved inorganic nitrogen(DIN).In addition,the average concentration of NH4^(+)-N was 2.51±1.60μmolL^(-1).PO_(4)^(3-)-P had an average concentration of 0.14±0.13μmolL-1.The average concentrations of urea-N and total hydrolyzed amino acids(THAA)were 1.73±1.36μmolL^(-1)and 1.33±0.80μmolL^(-1),respectively.Rich nutritive substances play a key role in the rapid production of U.prolifera and make the Jiangsu coastal water an incubator for green tide.
基金the University of French Polynesiafunding by several successive“Decision Aide a la Recherche”(DAR)grants to the Geodesy Observatory of Tahiti from the French Space Agency(CNES)+2 种基金fundings from the local government of French Polynesia(Observatoire Polynesien du Rechauffement Climatique)funding by“National Natural Science Foundation of China”(Grand No.41931075)funding by“the Fundamental Research Funds for the Central Universities"(Grand No.2042022kf1198)。
文摘In this study,we estimate the absolute vertical land motions at three tidal stations with collocated Global Navigation Satellite System(GNSS)receivers over French Polynesia during the period 2007-2020,and obtain,as ancillary results,estimates of the absolute changes in sea level at the same locations.To verify our processing approach to determining vertical motion,we first modeled vertical motion at the International GNSS Service(IGS)THTI station located in the capital island of Tahiti and compared our estimate with previous independent determinations,with a good agreement.We obtained the following estimates for the vertical land motions at the tide gauges:Tubuai island,Austral Archipelago-0.92±0.17 mm/yr,Vairao village,Tahiti Iti:-0.49±0.39 mm/yr,Rikitea,Gambier Archipelago-0.43±0.17 mm/yr.The absolute variations of the sea level are:Tubuai island,Austral Archipelago 5.25±0.60 mm/yr,Vairao village,Tahiti Iti:3.62±0.52 mm/yr,Rikitea,Gambier Archipelago 1.52±0.23 mm/yr.We discuss these absolute values in light of the values obtained from altimetric measurements and other means in French Polynesia.
基金Supported by the National Key R&D Program of China(No.2022YFC3106005)the Shandong Provincial Natural Science Foundation(No.ZR2021MD122)+1 种基金the MNR Key Laboratory of Eco-Environmental Science and Technology,China(No.MEEST-2023-04)the Shandong Provincial Key Laboratory of Marine Ecological Environment and Disaster Prevention and Mitigation(No.201708)。
文摘In 2022,Yellow Sea green tide caused by Ulva prolifera reached a historic minimum and the coastal areas of Shandong Peninsula were less affected.However,the largest amount of seaweed biomass has been washed ashore on Lianyungang and Rizhao coasts since 2015.We studied the development pattern of Yellow Sea green tide in 2022,and analyzed the key environmental factors on the growth and drifting,then discussed the possible reasons that resulted in the massive stranding of green tide biomass in Lianyungang and Rizhao.Results show under the combined influence of the east to southeast winds and currents with shoreward anomalies,green tide drifted to the coastal waters between Shandong and Jiangsu provinces and the distribution areas located westward compared with previous years(2008–2021).Floating U.prolifera rafts from the coastal waters of Binhai and Sheyang drifted continuously into the coastal waters of Lianyungang and Rizhao,providing important supplements for Yellow Sea green tide.Because green tide in 2022 distributed close to the coastal waters,the abundant nutrients might support their continuous high growth rate.In addition,the amount of rainfall around Shandong Peninsula from late June to early July were significantly higher than in previous years,which might promote the development of green tide to some extent.
基金The National Natural Science Foundation of China under contract Nos 41931182,42090040,42176024,and 42206006the National Key Program for Developing Basic Sciences under contract No.2022YFC3104802.
文摘The tide plays a pivotal role in the ocean,affecting the global ocean circulation and supplying the bulk of the energy for the global meridional overturning circulation.To further investigate internal tides and their impacts on circulation,it is imperative to incorporate tidal forcing into the eddy-resolving global ocean circulation model.In this study,we successfully incorporated explicit tides(eight major constituents)into a global eddy-resolving general ocean circulation model and evaluated its tidal simulation ability.We obtained harmonic constants by analyzing sea surface height through tidal harmonic analysis and compared them with the analysis data Topex Poseidon Cross-Overs v9(TPXO9),the open ocean tide dataset from 102 open-ocean tide observations,and tide gauge stations from World Ocean Circulation Experiment.The results demonstrated that the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics/Institute of Atmospheric Physics(LASG/IAP)Climate System Ocean Model 3.0(LICOM3.0)effectively simulated tides,with errors predominantly occurring in nearshore regions.The tidal amplitude simulated in LICOM3.0 was greater than that of TPXO9,and these high-amplitude areas exhibited greater errors.The amplitude error of the M_(2) constituent was larger,while the phase error of the K_(1) constituent was more significant.Furthermore,we further compared our results with those from other models.
基金Supported by the Laoshan Laboratory (No.LSKJ202204005)the Mount Tai Scholar Climbing Plan to Song SUNthe Open Fund of CAS Key Laboratory of Marine Ecology and Environmental Sciences,Institute of Oceanology,Chinese Academy of Sciences (No.KLMEES201801)
文摘Ulva prolifera is the causative species of the annually occurring large-scale green tides in China since 2007.Its specific biological features on reproductivity strategies,as well as intra-species genetic diversity,are still largely unknown,especially at the genome level,despite their importance in understanding the formation and outbreak of massive green tides.In the present study,the restriction site-associated DNA genotyping approach(2b-RAD)was adopted to identify the genome-wide single-nucleotide polymorphisms(SNPs)of 54 individual thalli including samples collected from Subei Shoal in 2019 and Qingdao coast from 2019 to 2021.SNPs genotype results revealed that most of the thalli in 2019 and 2020 were haploid gametophytes,while only half of the thalli were gametophytes in 2021,indicating flexibility in the reproductive strategies for the formation of the green tides among different years and the dominance of asexual and vegetative reproductive mode for the floating period.Besides,population analysis was conducted,and it revealed a very low genetic diversity among samples from Subei Shoal and the Qingdao coast in the same year and a higher divergence among samples in different years.The results showed the efficiency of 2b-RAD in the exploration of SNPs in U.prolifera and provided the first genome-wide scale evidence for the origin of the large-scale green tides on the Qingdao coast.This study improved our understanding of the reproductive strategy and genetic diversity of the green tide causative species and will help further reveal the biological causes of the green tide in China.
基金The Shandong Provincial Natural Science Foundation under contract No.ZR2023QD045the National Natural Science Foundation of China under contract Nos 42406026,42076024 and 42106032supported by the Taishan Scholar Program under contract No.tstp20221148。
文摘The three-dimensional displacements caused by ocean loading effects are significant enough to impact spatial geodetic measurements on sub-daily or longer timescales,particularly in the vertical direction.Currently,most tide models incorporate the distribution of vertical displacement loading tides;however,their accuracy has not been assessed for the equatorial and Indian Ocean regions.Global Positioning System(GPS)observations provide high-precision data on sea-level changes,enabling the assessment of the accuracy and reliability of vertical displacement tide models.However,because the tidal period of the K_(2) constituent is almost identical to the orbital period of GPS constellations,the estimation of the K_(2) tidal constituent from GPS observations is not satisfactory.In this study,the principle of smoothness is employed to correct the systematic error in K_(2) estimates in GPS observations through quadratic fitting.Using the adjusted harmonic constants from 31 GPS stations for the equatorial and Indian Ocean,the accuracy of eight major constituents from five global vertical displacement tide models(FES2014,EOT11a,GOT4.10c,GOT4.8,and NAO.99b)is evaluated for the equatorial and Indian Ocean.The results indicate that the EOT11a and FES2014 models exhibit higher accuracy in the vertical displacement tide models for the equatorial and Indian Ocean,with root sum squares errors of 2.29 mm and 2.34 mm,res-pectively.Furthermore,a brief analysis of the vertical displacement tide distribution characteristics of the eight major constituents for the equatorial and Indian Ocean was conducted using the EOT11a model.
基金Supported by the Fundamental Research Projects of Science&Technology Innovation and Development Plan in Yantai City(No.2022JCYJ041)the Natural Science Foundation of Shandong Province(Nos.ZR2022MD042,ZR2022MD028)+1 种基金the Seed Project of Yantai Institute of Coastal Zone Research,Chinese Academy of Sciences(No.YICE351030601)the NSFC Fund Project(No.42206240)。
文摘Since 2007,the Yellow Sea green tide has broken out every summer,causing great harm to the environment and society.Although satellite remote sensing(RS)has been used in biomass research,there are several shortcomings,such as mixed pixels,atmospheric interference,and difficult field validation.The biomass of green tide has been lacking a high-precision estimation method.In this study,high-resolution unmanned aerial vehicle(UAV)RS was used to quantitatively map the biomass of green tides.By utilizing experimental data from previous studies,a robust relationship was established to link biomass to the red-green-blue floating algae index(RGB-FAI).Then,the lab-based model for green tide biomass from visible images taken by the UAV camera was developed and validated by field measurements.Re sults show that the accurate and cost-effective method is able to estimate the green tide biomass and its changes in given local waters of the near and far seas.The study provided an effective complement to the traditional satellite RS,as well as high-precision quantitative techniques for decision-making in disaster management.
文摘Many studies point out that weather conditions involving temperature, wind power, monsoon transform, air pressure, sea condition, tide, ocean current, salinity, eutrophic environment and so on are key factors causing Red Tide. In the red tide high frequency areas of the South China Sea, the eutrophic environment of sea water has already existed, so the key elements such as meteorological and hydrological conditions play an importance role in the occurrence of red tide. The atmospheric circulation maintenance and variation decide whether meteorological phenomena, and hydrological key elements stabilize or change. Moreover, the red tide organisms' breeding from the initial stage to the blooming reproduction stage, until reaching the biological density of the red tide, generally takes 4 - 5 days. In the paper, the red tide examples are analyzed in the past 10 years, and the weather circulation situation and hydro-meteorological key elements of it are counted to find the previous circulation mode and bring out important factors inducing the blooming of red tide. The predicted result in 2003 according to this method was satisfactory.
基金financially supported by the Tianjin Marine Science and Technology Project (KJXH2011-05)local colleges and universities in Shanghai liberal arts academic programme (B5201120003)
文摘The annual frequency of red tides from 1977 to 2012 and the monthly frequency of red tides from 2001 to 2012 in China seas were used to establish the time series of red tide annual frequency and monthly frequency, respectively. The annual frequency fit well with time segments revealed by piecewise linear regression analysis. The seasonal maximum of monthly frequency was in May (-18.22), and the stochastic volatility tended to increase gradually with time series, with peak values occurring from May to July. Holt exponential smoothing and Holt-winter exponential smoothing were used to predict red tide annual and monthly frequencies, which revealed that the annual frequency of red tides would rise slowly by one time from 2013 to 2020, and that red tides would mainly occur from May to July in 2013-2016 with a peak value of about 25 times in May.
基金natural Science Foundation of Zhejiang Province (Y505032) the Ningbo Natural Science Foundation (2006A610077).
文摘Most of the flood from the wide inner lowland plain discharges through tide locks on coast, and the influence of tidal flat inning projects on the tide lock drainage must be solved by seawall line choice. Taking the Cangdongpian inning area on the west side of Tiaozini Sand as a case study, the paper analyzed the compages and validity of ebb tide water to maintain the flood discharge creek below the tide lock for different projects of seawall line. Result indicates that a rational seawall line program has little influence on the flood discharge of lock during the mean tide or general spring tides, but has certain influences during a storm surge or an extreme spring tide in autumn. However it could be resolved by several times of artificial scour on the creek.
基金This paper is supported by the National Natural Science Foundation of China(Projects under contracts No.49676275,49976002,40506007)Microwave Imaging National Key Laboratory Foundation(No.51442020103JW1002).
文摘The analyses of a data series obtained during TOGA- COARE show the existence of remarkable semi-diurnal intemal tides in the western equatorial Pacific Ocean around 1°45'S, 156°E. Some characteristic parameters of the internal tides are vertical wavenumber -1.6×10^-3 m^-1, horizontal wavenumber (wavelength) 3.3×10^-2 km^-1 (210 km), vertical propagation speed -3.8 cm/s and horizontal propagation speed 2.0 m/s. The waveforms propagate downwards slantingly, that is, the wave energy transfers upwards slantingly. Depth-distribution of the'rotary spectral levels is a saddle-shape. The depths of the trough and the deeper peaks are almost coincident with those of the south boundaries of the South Equatorial Current and the Equatorial Undercurrent, respectively. The mean orientation of the rotary spectral ellipse changes with depth: 30° from north to east at 40 m, and changes into 14° from east to south at 324 m, and generally, it points to northeastward, which indicates "that waves come from the southwest.
文摘Tidal data of Tanggu marine environment monitoring stations for 59 years (1950-2008) was processed by using harmonic analysis, harmonic constants curves were discussed. And by using FFT spectral analysis periodicity and causation of its harmonic constants were analyzed. Alter astronomic tide signal was eliminated, residual water level was decomposed by using FFT spectral analysis, and then we got the periodic variation of mean residual water level over the past 50 years and discussed mean sea level changing trends of Tianjin offshore. The results show that variety of amplitude of M2 tidal constituent reveals 20 years, 4-6 years, 2-3-year periods, and it was obviously influenced by engineering construction since reform and opening age. Residual water level fluctuations reveal 20 years, 5-6 years, 2-3 years and 1 year periods. Sea level of Tianjin offshore displays a progressive ascending trend with rate about 3.4mm/a, which was influenced mainly by sea level rise and land subsidence.
基金supported by the special fund for the Ocean Public Welfare Scientific Research Project, State Oceanic Administration, People's Republic of China(Grant No. 200805065)
文摘A 3-D unstructured-grid, finite-volume coastal ocean model (FVCOM) was used to study the tides and tidal currents in the Lianzhou Bay and adjacent areas. The simulation results were in good agreement with observations. The co-tidal maps of K1 , O1 , and M2 indicated that K1 and O1 were mostly standing waves outside the Lianzhou Bay, while M2 had a largely propagating character. However, all three constituents became propagating waves when entering the Lianzhou Bay, due to the shallow waters. The tidal current ellipses showed the characters of K1 , O1 , and M2 constituents: K1 and O1 were rotating outside the bay, but rectilinear along the water channels inside the bay; M2 was mostly rectilinear over the whole area. The tidal-induced residual current shows the flow was divided into two branches by the Guantouling Peninsula: one turned to flow west; the other was blocked by the southern boundary of the peninsula, creating a clockwise circulation. In Lianzhou Bay, there were two circulation systems, a cyclonic one at the top of the bay and an anti-cyclonic at the mouth.
基金supported by the National Natural Science Foundation of China (No.41176025, 40876008)the SCSMEX project
文摘20-day in-situ ADCP current and CTD data are used to investigate the characteristics and energy of the internal tides in the northern South China Sea (NSCS). The results show that the O1, K1, M2 and S2 constituents of internal tides are energetic and diurnal constituents (O1 and K1) are dominating. In the observational period, the current vectors of these four constituents all rotate clockwise and the maximum semi-major axe of internal tidal ellipses is more than 14 cm/s. The variation of ocean temperature shows that the internal tides present obvious quasi-diurnal oscillation and the average amplitude reaches 50 m. Furthermore, these internal tides carry high energy and appear to be intermittent. The maximum values of KE (PE) during the observational period are up to 2 (3.5) k J/m^2 for diurnal internal tides, and up to 1 (1.5) k J/m^2 for semidiurnal internal tides.
基金This study was supported by the National Natural Science Foundation of China under contract Nos 40036010,40206020 and 40306025.
文摘The development of the phytoplankton community was studied in the Jiaozhou Bay during the spring to neap tide in August2001, through three cruises and a 15 d continuous observation. This investigation indicates that diatom cell abundance increasedsharply following the end of a spring tide, from 9 cells/cm3 to a peak of 94 cells/cm3. The dominant species composition andabundance show a quick species sequence from spring to neap tide, and the dominant species at the start phase is Skeletomenacostatum, then changes to Chaetoceros curvisetus, finally it changes to Eucampia zodiacus. Silicate concentration increasesduring spring tide, as a result of nutrient replenishment from the watersediment interface, its initial average concentration inneap tide is 1.39 mmol/dm3 and reached the peak average concentration of 8.40 mmol/dm3 in spring tide. But the nitrogenconcentration dropped due to dilution by the low nitrogen seawater from the Huanghai Sea, its initial average concentration inneap tide is 67 mmol/dm3 and decreased to the average concentration of 54 mmol/dm3 in spring tide. The degree of siliconlimitation was decreased and phytoplankton, especially diatoms, responds immediately after nutrient replenishment in thewater column. Skeletonmea costatum, as one of the dominant species in the Jiaozhou Bay, shows a quicker response tonutrient availability than Eucampia zodiacus and Chaetoceros curvisetus. It is proposed that dominant species compositionand water column stability synchronously determine the development of phytoplankton summer blooms in the Jiaozhou bay.
基金The National Key Research and Development Program of China under contract Nos 2016YFC1402104 and2016YFC1402106the National Natural Science Foundation of China under contract No.41606190+2 种基金the Shandong Natural Science Foundation under contract No.ZR2016DB22the Foundation of Key Laboratory of Integrated Monitoring and Applied Technologies for Marine Harmful Algal Blooms,SOA under contract No.MATHAB201806the Creative Team Project of the Laboratory for Marine Ecology and Environmental Science,Qingdao National Laboratory for Marine Science and Technology under contract No.LMEESCTSP-2018-3
文摘Since 2015, a novel green tide has been recurring in the coastal areas of Qinhuangdao at the western coast of the Bohai Sea in China, threatening the environment and ecosystem of the Beidaihe seaside holiday resort along the coast. Micro-propagules of the green algae including gametes, spores, micro-germlings and micro-vegetative fragments play an important role in the formation of green tides. They serve as a "seed source" of green macroalgae, and their distributions could reflect and influence the "algae source" of green tides. In this study,monthly surveys in the inshore and offshore areas of the Qinhuangdao coast were conducted from April to September 2016 and in January 2017 to investigate the tempo-spatial distribution patterns and the biomass variations of the green algae micro-propagules. The obtained results show that micro-propagules were mainly distributed in the inshore areas with a significantly decreasing abundance towards offshore areas. Their biomass was highest in July and August, and lowest in winter. The areas that were affected by the green tides showed a remarkably higher abundance of micro-propagules compared to other areas. These micro-propagules could serve as the "seed" source of green tides. Their distribution patterns indicate that the green tide in the coastal areas of Qinhuangdao originated locally.