MODIS (Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard the Terra (EOS AM) and Aqua (EOS PM) satellites. Linear spectral mixture models are applied to MOIDS data for the sub-pixel classi...MODIS (Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard the Terra (EOS AM) and Aqua (EOS PM) satellites. Linear spectral mixture models are applied to MOIDS data for the sub-pixel classification of land covers. Shaoxing county of Zhejiang Province in China was chosen to be the study site and early rice was selected as the study crop. The derived proportions of land covers from MODIS pixel using linear spectral mixture models were compared with unsupervised classification derived from TM data acquired on the same day, which implies that MODIS data could be used as satellite data source for rice cultivation area estimation, possibly rice growth monitoring and yield forecasting on the regional scale.展开更多
叶面积指数(Leaf Area Index)可用来反映作物的生长状况,常作为主要指标应用于农作物估产。本文研究遥感中常见的混合像元问题对LAI反演所带来的不确定性问题。研究的混合像元由两种情况构成,一种是由不同长势的作物所构成的混合像元,...叶面积指数(Leaf Area Index)可用来反映作物的生长状况,常作为主要指标应用于农作物估产。本文研究遥感中常见的混合像元问题对LAI反演所带来的不确定性问题。研究的混合像元由两种情况构成,一种是由不同长势的作物所构成的混合像元,另一种情况是由不同端元形成的混合像元。结果表明,不同长势形成的混合像元对LAI的准确反演影响不大;不同组分形成的混合像元对LAI反演影响很大。从验证的角度讲,地面实测点的LAI数据不能代表一定分辨率区域的LAI的值,对于像元LAI的验证要注意正确获得像元的LAI。展开更多
文摘MODIS (Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard the Terra (EOS AM) and Aqua (EOS PM) satellites. Linear spectral mixture models are applied to MOIDS data for the sub-pixel classification of land covers. Shaoxing county of Zhejiang Province in China was chosen to be the study site and early rice was selected as the study crop. The derived proportions of land covers from MODIS pixel using linear spectral mixture models were compared with unsupervised classification derived from TM data acquired on the same day, which implies that MODIS data could be used as satellite data source for rice cultivation area estimation, possibly rice growth monitoring and yield forecasting on the regional scale.
文摘叶面积指数(Leaf Area Index)可用来反映作物的生长状况,常作为主要指标应用于农作物估产。本文研究遥感中常见的混合像元问题对LAI反演所带来的不确定性问题。研究的混合像元由两种情况构成,一种是由不同长势的作物所构成的混合像元,另一种情况是由不同端元形成的混合像元。结果表明,不同长势形成的混合像元对LAI的准确反演影响不大;不同组分形成的混合像元对LAI反演影响很大。从验证的角度讲,地面实测点的LAI数据不能代表一定分辨率区域的LAI的值,对于像元LAI的验证要注意正确获得像元的LAI。