In this study, plagiogranites in the Diyanmiao ophiolite of the southeastern Central Asian Orogenic Belt (Altaids) were investigated for the first time. The plagiogranites are composed predominantly of albite and qu...In this study, plagiogranites in the Diyanmiao ophiolite of the southeastern Central Asian Orogenic Belt (Altaids) were investigated for the first time. The plagiogranites are composed predominantly of albite and quartz, and occur as irregular intrusive veins in pillow basalts. The plagiogranites have high SiO2 (74.37-76.68wt%) and low A1203 (11.99-13.30wt%), and intensively high Na20 (4.52-5.49wt%) and low K20 (0.03-0.40wt%) resulting in high Na20/K20 ratios (11.3-183). These rocks are classified as part of the low-K tholeiitic series. The plagiogranites have low total rare earth element contents (∑REE)(23.62-39.77ppm), small negative Eu anomalies (JEu=0.44-0.62), and flat to slightly LREE-depleted chondrite-normalized REE patterns ((La/Yb)N=0.68-0.76), similar to N-MORB. The plagiogranites are also characterized by Th, U, Zr, and Hf enrichment, and Nb, P, and Ti depletion, have overall flat primitivemantle-normalized trace element patterns. Field and petrological observations and geochemical data suggest that the plagiogranites in the Diyanmiao ophiolite are similar to fractionation-type plagiogranites. Furthermore, the REE patterns of the plagiogranites are similar to those of the gabbros and pillow basalts in the ophiolite. In plots of SREE-SiO2, La-SiO2, and Yb-SiO2, the plagiogranites, pillow basalts, and gabbros show trends typical of crystal fractionation. As such, the plagiogranites are oceanic in origin, formed by crystal fractionation from basaltic magmas derived from depleted mantle, and are part of the Diyanmiao ophiolite. LA-ICP-MS U-Pb dating of zircons from the plagiogranites yielded ages of 328.6±2.1 and 327.1±2.1Ma, indicating an early Carboniferous age for the Diyanmiao ophiolite. These results provide petrological and geochronological evidence for the identification of the Erenhot-Hegenshan oceanic basin and Hegenshan suture of the Paleo-Asian Ocean.展开更多
This paper reports petrological and geochemical features and zircon U-Pb age of plagiogranite from the Hongliugou-Lapeiquan ophiolitic melange belt in the northern Altyn Tagh. The zircon U-Pb dating results yield a me...This paper reports petrological and geochemical features and zircon U-Pb age of plagiogranite from the Hongliugou-Lapeiquan ophiolitic melange belt in the northern Altyn Tagh. The zircon U-Pb dating results yield a mean ^238U/^206pb age of 512.1 ± 1.5 Ma, representing an emplacement time of the plagiogranites in the Middle Cambrian. The plagiogranites are interpreted to have derived from anatexis of hydrated amphibolites by ductile shearing during transports of the oceanic crust. Thus it is believed that the formation age of such type of plagiogranite was coeval to or slightly younger than the spreading of the Hongliugou-Lapeiquan limited oceanic basin. The new results from the plagiogranites suggest that an oceanic basin existed in the northern Altyn area during the Middle Cambrian.展开更多
Shahre-Babak ophiolite is a part of the inner Zagros ophiolite belt in Iran. Major parts of intrusive masses of Share-Babak ophiolite are gabbro and plagiogranite. The SiO2 versus Na2O+K2O diagram shows that the palg...Shahre-Babak ophiolite is a part of the inner Zagros ophiolite belt in Iran. Major parts of intrusive masses of Share-Babak ophiolite are gabbro and plagiogranite. The SiO2 versus Na2O+K2O diagram shows that the palgiogranites are related to calk-alkaline series. Rare earth elements exhibit relatively similar pattern that indicates these rocks are syngenetic. Also, REE patterns display an enrichment of LREE compared to HREE, and are characterized by flat to slightly concaveup patterns from Gd to Yb. Such patterns contrast sharply with those of plagiogranites in more complete ophiolite sequences, such as the Semail ophiolite, Oman, or the Troodos ophiolite, Cyprus, and Neyriz, where patterns are much flatter and slightly LREE-depleted. The slightly LREE-enriched patterns of the Shahre-Babak plagiogranites support a partial melting origin for them. The low TiO2, Nb, Ta content and high LREE concentrations of the Shahre-Babak plagiogranites indicate that the rocks were likely derived from the anatexis of amphibolites, which were related to hydrothermal alteration of gabbros in intra-oceanic back-arc basin.展开更多
Field observation, geochemical signatures and zircon Hf isotope data indicate that Cuomuqu ophiolite in the Bangonghu area was formed in a back-arc basin (BAB) above a supra- subduction zone (SSZ). Zircon U-Pb dat...Field observation, geochemical signatures and zircon Hf isotope data indicate that Cuomuqu ophiolite in the Bangonghu area was formed in a back-arc basin (BAB) above a supra- subduction zone (SSZ). Zircon U-Pb dating of the diabase from the Cuomuqu massif yielded an age of 164.3±1.9 Ma, thus indicating that the ophiolite complex was formed in the Middle Jurassic during back-arc extension of the mature Bangonghu-Nujiang Ocean. The zircon εHf(t) and TDMC values of the plagiogranite are similar to the εHf(t) and TDM of the diabase, respectively. The mode of occurrence of plagiogranites and their bulk-rock and Hf isotope characteristics indicate that they were derived from the mantle, associated with the surrounding gabbro and diabase, and were formed by partial melting of altered and hydrated mafic rocks under shear conditions during lateral drifting of the oceanic crust. The zircon U-Pb age of the plagiogranite is 156.4±1.4 Ma, and it is 7.9 Ma younger than the hosting diabase. In this study, zircon chronological and Hf isotopic data were tentatively analyzed to determine the genesis of plagiogranites in the Cuomuqu ophiolite complex.展开更多
Structural and petrological data suggest that the Xigaze ophiolite from the Yarlung Zangbo Suture Zone(YZSZ)in south Tibet was a typical slow-spreading ridge.A new field,geochemical,mineral,and U-Pb zircon dataset of ...Structural and petrological data suggest that the Xigaze ophiolite from the Yarlung Zangbo Suture Zone(YZSZ)in south Tibet was a typical slow-spreading ridge.A new field,geochemical,mineral,and U-Pb zircon dataset of plagiogranite intrusions were used to constrain the dynamic processes of oceanic accretion in this slow-spreading ridge.Plagiogranites mainly occur as dykes or intrusions intruded into the whole sequence of the ophiolite and have a similar orientation to the dolerite dykes developed in the late stage of detachment faulting.U-Pb zircon ages of 122–123 Ma were obtained for two types of plagiogranites and associated dolerite dykes.Detailed geochemical and mineralogical examinations suggest that the plagiogranites are the product of low-pressure(2–3 kbar)fractional crystallization of midocean ridge basalt-like magma and unlikely to have been derived from the partial melting of hydrous gabbroic rocks.The complex cross-cut relationship between the plagiogranites and ophiolite sequence reflects that they are controlled by small discontinued melt lenses rather than a big magma chamber under the ridge axis and reveals multiple injections during the oceanic crust accretion.The formation of plagiogranites possibly reflects the complex characteristic of oceanic accretion at slow-spreading ridges,time-dependent on structural(external)and magmatic(internal)processes.展开更多
The Yesilova ophiolite located in the Alpine zone. This work deals with differentiation mechanism of ultramafic cumulate in ophiolite. Generally, the sequence consists of gabbro and plagiogranite. The petrographic and...The Yesilova ophiolite located in the Alpine zone. This work deals with differentiation mechanism of ultramafic cumulate in ophiolite. Generally, the sequence consists of gabbro and plagiogranite. The petrographic and petrolgichal properties of it show that the layering in gabbros are products of a differentiation by fractional crystallization insitu. Because it has ferrous compounds (magnetite, hematite) by means of volatiles (H2O, CO2) that evidence magma at high temperatures (〉700 ℃). Ferrous liquids are compatible with fractional crystallization through olivine, plagioclase, clinopyroxene removal; whereas the evolved gabbros represent clinopyroxene, plagioclase cumulates from ferrous liquids with little amounts of trapped melt. Furthermore, cathodo luminesans image of zircons shows chemichal characteristic of oceanic plagiogranit (such as Fe2O3/MgO, Rb, Sr, Zr, TiO2) that these characters can be explained by fractional crystallization processes in the late stage of magma generation. Furthermore, all plagiogranites have small positive Eu anomalies indicating the significant role of plagioclase in the fractional crystallization. So, the Yesilova ophiolite ultramafic cumulates are the most probably related to crystal-liquid fractionation process of the oceanic crust of the Alpine belt. The plagiogranite is differentiation products of crystal-liquid insitu ofa mafic magma in the magma chamber.展开更多
Constraining the processes associated with the formation of new(juvenile)continental crust from mantle-derived(basaltic)sources is key to understanding the origin and evolution of Earth’s landmasses.Here we present h...Constraining the processes associated with the formation of new(juvenile)continental crust from mantle-derived(basaltic)sources is key to understanding the origin and evolution of Earth’s landmasses.Here we present high-precision measurements of stable isotopes of potassium(K)from Earth’s most voluminous plagiogranites,exposed near El-Shadli in the Eastern Desert of Egypt.These plagiogranites exhibit a wide range of d41K values(–0.31‰±0.06‰to 0.36‰±0.05‰;2 SE,standard error)that are significantly higher(isotopically heavier)than mantle values(–0.42‰±0.08‰).Isotopic(87Sr/86Sr and^(143)Nd/^(144)Nd)and trace element data indicate that the large variation in d41K was inherited from the basaltic source rocks of the El-Shadli plagiogranites,consistent with an origin through partial melting of hydrothermally-altered mid-to-lower oceanic crust.These data demonstrate that K isotopes have the potential to better constrain the source of granitoid rocks and thus the secular evolution of the continental crust.展开更多
SHRIMPP U-Pb zircon age and geochemical and Nd isotopic data are reported for the Aoyitake plagiogranite in western Tarim Block, NW China. The plagiogranite intruded the Middle Pro- terozoic and Lower Carboniferous wi...SHRIMPP U-Pb zircon age and geochemical and Nd isotopic data are reported for the Aoyitake plagiogranite in western Tarim Block, NW China. The plagiogranite intruded the Middle Pro- terozoic and Lower Carboniferous with an exposure area of ca. 60 km2 and crystallized at 330.7±4.8 Ma. Rock types mainly include tonalite, trondhjemite and minor amounts of diorite and quartz-diorite. Feldspars in the rocks are dominated by oligoclase-andesine, and minor perthite observed locally. The granites are sodic with Na/K ratios (molar) between 4 and 87. Total REE (50-220 ppm) show a clear positive correlation with SiO2. There is no LRRE/HREE fractionation (LaN/YbN=0.5-1.5), me- dium negative Eu anomalies (δ Eu=0.3-0.6), high Y content and low Sr/Y ratio (~1.0). These granites exhibit relatively juvenile Nd T2DM model ages of 470 to 580 Ma and positive εNd(331 Ma) values of 6.23 to 7.65. The aforementioned characteristics are similar to those of ocean island or ocean ridge plagiogranites. However, the regional geology, especially its scale, precludes that the plagiogranite pluton was derived directly from fractionational crystallization of mantle-derived basaltic magma. We interpreted that the primary magma of the pluton might be tonalitic in composition generated by ca. 50% partial melting of the juvenile basaltic crust. The primary magma experienced intensive frac- tionational crystallization, and intruded into the middle to upper crusts to form the granite pluton. In combination with the previous regional geological data, it is concluded that the plagiogranite pluton was emplaced within the Tarim Block in respond to the Carboniferous continental rifting along the Tianshan orogenic belt.展开更多
基金financially supported by the National Natural Science Foundation of China(41502211)the China Geological Survey(1212011120701,1212011120711,12120114064201,DD20160041)the Research Fund for the Doctoral Program of Hebei GEO University(BQ2017052)
文摘In this study, plagiogranites in the Diyanmiao ophiolite of the southeastern Central Asian Orogenic Belt (Altaids) were investigated for the first time. The plagiogranites are composed predominantly of albite and quartz, and occur as irregular intrusive veins in pillow basalts. The plagiogranites have high SiO2 (74.37-76.68wt%) and low A1203 (11.99-13.30wt%), and intensively high Na20 (4.52-5.49wt%) and low K20 (0.03-0.40wt%) resulting in high Na20/K20 ratios (11.3-183). These rocks are classified as part of the low-K tholeiitic series. The plagiogranites have low total rare earth element contents (∑REE)(23.62-39.77ppm), small negative Eu anomalies (JEu=0.44-0.62), and flat to slightly LREE-depleted chondrite-normalized REE patterns ((La/Yb)N=0.68-0.76), similar to N-MORB. The plagiogranites are also characterized by Th, U, Zr, and Hf enrichment, and Nb, P, and Ti depletion, have overall flat primitivemantle-normalized trace element patterns. Field and petrological observations and geochemical data suggest that the plagiogranites in the Diyanmiao ophiolite are similar to fractionation-type plagiogranites. Furthermore, the REE patterns of the plagiogranites are similar to those of the gabbros and pillow basalts in the ophiolite. In plots of SREE-SiO2, La-SiO2, and Yb-SiO2, the plagiogranites, pillow basalts, and gabbros show trends typical of crystal fractionation. As such, the plagiogranites are oceanic in origin, formed by crystal fractionation from basaltic magmas derived from depleted mantle, and are part of the Diyanmiao ophiolite. LA-ICP-MS U-Pb dating of zircons from the plagiogranites yielded ages of 328.6±2.1 and 327.1±2.1Ma, indicating an early Carboniferous age for the Diyanmiao ophiolite. These results provide petrological and geochronological evidence for the identification of the Erenhot-Hegenshan oceanic basin and Hegenshan suture of the Paleo-Asian Ocean.
基金financially supported by the China Geological Survey (Grant No. 1212010911025)National Natural Science Foundation of China (Grant No. 41002020)
文摘This paper reports petrological and geochemical features and zircon U-Pb age of plagiogranite from the Hongliugou-Lapeiquan ophiolitic melange belt in the northern Altyn Tagh. The zircon U-Pb dating results yield a mean ^238U/^206pb age of 512.1 ± 1.5 Ma, representing an emplacement time of the plagiogranites in the Middle Cambrian. The plagiogranites are interpreted to have derived from anatexis of hydrated amphibolites by ductile shearing during transports of the oceanic crust. Thus it is believed that the formation age of such type of plagiogranite was coeval to or slightly younger than the spreading of the Hongliugou-Lapeiquan limited oceanic basin. The new results from the plagiogranites suggest that an oceanic basin existed in the northern Altyn area during the Middle Cambrian.
文摘Shahre-Babak ophiolite is a part of the inner Zagros ophiolite belt in Iran. Major parts of intrusive masses of Share-Babak ophiolite are gabbro and plagiogranite. The SiO2 versus Na2O+K2O diagram shows that the palgiogranites are related to calk-alkaline series. Rare earth elements exhibit relatively similar pattern that indicates these rocks are syngenetic. Also, REE patterns display an enrichment of LREE compared to HREE, and are characterized by flat to slightly concaveup patterns from Gd to Yb. Such patterns contrast sharply with those of plagiogranites in more complete ophiolite sequences, such as the Semail ophiolite, Oman, or the Troodos ophiolite, Cyprus, and Neyriz, where patterns are much flatter and slightly LREE-depleted. The slightly LREE-enriched patterns of the Shahre-Babak plagiogranites support a partial melting origin for them. The low TiO2, Nb, Ta content and high LREE concentrations of the Shahre-Babak plagiogranites indicate that the rocks were likely derived from the anatexis of amphibolites, which were related to hydrothermal alteration of gabbros in intra-oceanic back-arc basin.
基金supported by the National Nature Science Foundation of China [No.41372208 and 41472054]the Foundation of China Geological Survey [No.1212011121259,1212011121262 and 1212011221087]the Open found of the State Key Laboratory of Ore Deposit Geochemistry,CAS [No.201304]
文摘Field observation, geochemical signatures and zircon Hf isotope data indicate that Cuomuqu ophiolite in the Bangonghu area was formed in a back-arc basin (BAB) above a supra- subduction zone (SSZ). Zircon U-Pb dating of the diabase from the Cuomuqu massif yielded an age of 164.3±1.9 Ma, thus indicating that the ophiolite complex was formed in the Middle Jurassic during back-arc extension of the mature Bangonghu-Nujiang Ocean. The zircon εHf(t) and TDMC values of the plagiogranite are similar to the εHf(t) and TDM of the diabase, respectively. The mode of occurrence of plagiogranites and their bulk-rock and Hf isotope characteristics indicate that they were derived from the mantle, associated with the surrounding gabbro and diabase, and were formed by partial melting of altered and hydrated mafic rocks under shear conditions during lateral drifting of the oceanic crust. The zircon U-Pb age of the plagiogranite is 156.4±1.4 Ma, and it is 7.9 Ma younger than the hosting diabase. In this study, zircon chronological and Hf isotopic data were tentatively analyzed to determine the genesis of plagiogranites in the Cuomuqu ophiolite complex.
基金supported by grants from the National Natural Science Foundation of China(Grant Nos.41720104009 and 41772231)the China Geological Survey Project(Grant No.DD20190060).
文摘Structural and petrological data suggest that the Xigaze ophiolite from the Yarlung Zangbo Suture Zone(YZSZ)in south Tibet was a typical slow-spreading ridge.A new field,geochemical,mineral,and U-Pb zircon dataset of plagiogranite intrusions were used to constrain the dynamic processes of oceanic accretion in this slow-spreading ridge.Plagiogranites mainly occur as dykes or intrusions intruded into the whole sequence of the ophiolite and have a similar orientation to the dolerite dykes developed in the late stage of detachment faulting.U-Pb zircon ages of 122–123 Ma were obtained for two types of plagiogranites and associated dolerite dykes.Detailed geochemical and mineralogical examinations suggest that the plagiogranites are the product of low-pressure(2–3 kbar)fractional crystallization of midocean ridge basalt-like magma and unlikely to have been derived from the partial melting of hydrous gabbroic rocks.The complex cross-cut relationship between the plagiogranites and ophiolite sequence reflects that they are controlled by small discontinued melt lenses rather than a big magma chamber under the ridge axis and reveals multiple injections during the oceanic crust accretion.The formation of plagiogranites possibly reflects the complex characteristic of oceanic accretion at slow-spreading ridges,time-dependent on structural(external)and magmatic(internal)processes.
文摘The Yesilova ophiolite located in the Alpine zone. This work deals with differentiation mechanism of ultramafic cumulate in ophiolite. Generally, the sequence consists of gabbro and plagiogranite. The petrographic and petrolgichal properties of it show that the layering in gabbros are products of a differentiation by fractional crystallization insitu. Because it has ferrous compounds (magnetite, hematite) by means of volatiles (H2O, CO2) that evidence magma at high temperatures (〉700 ℃). Ferrous liquids are compatible with fractional crystallization through olivine, plagioclase, clinopyroxene removal; whereas the evolved gabbros represent clinopyroxene, plagioclase cumulates from ferrous liquids with little amounts of trapped melt. Furthermore, cathodo luminesans image of zircons shows chemichal characteristic of oceanic plagiogranit (such as Fe2O3/MgO, Rb, Sr, Zr, TiO2) that these characters can be explained by fractional crystallization processes in the late stage of magma generation. Furthermore, all plagiogranites have small positive Eu anomalies indicating the significant role of plagioclase in the fractional crystallization. So, the Yesilova ophiolite ultramafic cumulates are the most probably related to crystal-liquid fractionation process of the oceanic crust of the Alpine belt. The plagiogranite is differentiation products of crystal-liquid insitu ofa mafic magma in the magma chamber.
基金the Editorial Advisor Prof.M.Santosh,Associate Editor Dr.S.Glorie,and two anonymous reviewers for their comments.H.G.acknowledges funding from the Khalifa University start-up fund(8474000697/FSU-2024-006)K.W.acknowledges support from the McDonnell Center for the Space Sciences and NASA(Emerging Worlds Program Grant No.#80NSSC21K0379)T.E.J.acknowledges funding from the Australian Government through an Australian Research Council Discovery Project(DP200101104)。
文摘Constraining the processes associated with the formation of new(juvenile)continental crust from mantle-derived(basaltic)sources is key to understanding the origin and evolution of Earth’s landmasses.Here we present high-precision measurements of stable isotopes of potassium(K)from Earth’s most voluminous plagiogranites,exposed near El-Shadli in the Eastern Desert of Egypt.These plagiogranites exhibit a wide range of d41K values(–0.31‰±0.06‰to 0.36‰±0.05‰;2 SE,standard error)that are significantly higher(isotopically heavier)than mantle values(–0.42‰±0.08‰).Isotopic(87Sr/86Sr and^(143)Nd/^(144)Nd)and trace element data indicate that the large variation in d41K was inherited from the basaltic source rocks of the El-Shadli plagiogranites,consistent with an origin through partial melting of hydrothermally-altered mid-to-lower oceanic crust.These data demonstrate that K isotopes have the potential to better constrain the source of granitoid rocks and thus the secular evolution of the continental crust.
基金This study was supported by the National Natural Science Foundation of China (Grant Nos. 40303007 and 40421303).
文摘SHRIMPP U-Pb zircon age and geochemical and Nd isotopic data are reported for the Aoyitake plagiogranite in western Tarim Block, NW China. The plagiogranite intruded the Middle Pro- terozoic and Lower Carboniferous with an exposure area of ca. 60 km2 and crystallized at 330.7±4.8 Ma. Rock types mainly include tonalite, trondhjemite and minor amounts of diorite and quartz-diorite. Feldspars in the rocks are dominated by oligoclase-andesine, and minor perthite observed locally. The granites are sodic with Na/K ratios (molar) between 4 and 87. Total REE (50-220 ppm) show a clear positive correlation with SiO2. There is no LRRE/HREE fractionation (LaN/YbN=0.5-1.5), me- dium negative Eu anomalies (δ Eu=0.3-0.6), high Y content and low Sr/Y ratio (~1.0). These granites exhibit relatively juvenile Nd T2DM model ages of 470 to 580 Ma and positive εNd(331 Ma) values of 6.23 to 7.65. The aforementioned characteristics are similar to those of ocean island or ocean ridge plagiogranites. However, the regional geology, especially its scale, precludes that the plagiogranite pluton was derived directly from fractionational crystallization of mantle-derived basaltic magma. We interpreted that the primary magma of the pluton might be tonalitic in composition generated by ca. 50% partial melting of the juvenile basaltic crust. The primary magma experienced intensive frac- tionational crystallization, and intruded into the middle to upper crusts to form the granite pluton. In combination with the previous regional geological data, it is concluded that the plagiogranite pluton was emplaced within the Tarim Block in respond to the Carboniferous continental rifting along the Tianshan orogenic belt.