Laboratory, greenhouse and field studies were undertaken to investigate the status of Cu and Zn and to find out whether the addition of these nutrient elements in soils would increase maize grains and yield components...Laboratory, greenhouse and field studies were undertaken to investigate the status of Cu and Zn and to find out whether the addition of these nutrient elements in soils would increase maize grains and yield components and also, remediate their constraints in coastal plain sand derived soil of southeastern Nigeria, for optimization of maize (Zea mays L.) yields. Dry matter yields, plant concentrations, plant uptake, and maize grain yields were used to evaluate the effects of Cu and Zn levels. In both the greenhouse and field experiments, hydrated Cu and Zn sulphate fertilizers were applied to the soils in separate experiments at seven levels (0, 2, 4, 6, 8, 10 and 12 kg·ha-1) for Cu and Zn respectively. The recommended N, P, and K at rates of 120, 60, 30 kg·ha-1, respectively, were also used as basal application. The results showed the status of available Cu and Zn by 0.1 N HCl was found to be low in the soil. The application of Cu and Zn into the soils significantly (P < 0.05) increased maize dry matter production, concentration, uptake and grain yields. The estimated optimum rates for Cu and Zn under greenhouse environments were established at 10 kg·Cu·ha-1 and 8 kg·Zn·ha-1, respectively. Maximum uptake and grain yields in maize were also established at 10 kg·Cu·ha-1 and 8 kg·Zn·ha-1, respectively. However, maize response curve showed that for optimum grain yield, concentration for Cu was determined to be 10 mg·kg-1, while for Zn it was 8 mg·kg-1. The current study showed that though the soils have a severe Cu and Zn deficiency, which could be due to their strong sorption capacity and nutrients mining due to intensive and continuous cropping, maize production can still be increased considerably in this soil and other similar soils in the same agro-ecological zone within a coastal plain sand derived soil by applying Cu and Zn at rates of 10 kg·Cu·ha-1 and 8 kg·Zn·ha-1, respectively.展开更多
文摘Laboratory, greenhouse and field studies were undertaken to investigate the status of Cu and Zn and to find out whether the addition of these nutrient elements in soils would increase maize grains and yield components and also, remediate their constraints in coastal plain sand derived soil of southeastern Nigeria, for optimization of maize (Zea mays L.) yields. Dry matter yields, plant concentrations, plant uptake, and maize grain yields were used to evaluate the effects of Cu and Zn levels. In both the greenhouse and field experiments, hydrated Cu and Zn sulphate fertilizers were applied to the soils in separate experiments at seven levels (0, 2, 4, 6, 8, 10 and 12 kg·ha-1) for Cu and Zn respectively. The recommended N, P, and K at rates of 120, 60, 30 kg·ha-1, respectively, were also used as basal application. The results showed the status of available Cu and Zn by 0.1 N HCl was found to be low in the soil. The application of Cu and Zn into the soils significantly (P < 0.05) increased maize dry matter production, concentration, uptake and grain yields. The estimated optimum rates for Cu and Zn under greenhouse environments were established at 10 kg·Cu·ha-1 and 8 kg·Zn·ha-1, respectively. Maximum uptake and grain yields in maize were also established at 10 kg·Cu·ha-1 and 8 kg·Zn·ha-1, respectively. However, maize response curve showed that for optimum grain yield, concentration for Cu was determined to be 10 mg·kg-1, while for Zn it was 8 mg·kg-1. The current study showed that though the soils have a severe Cu and Zn deficiency, which could be due to their strong sorption capacity and nutrients mining due to intensive and continuous cropping, maize production can still be increased considerably in this soil and other similar soils in the same agro-ecological zone within a coastal plain sand derived soil by applying Cu and Zn at rates of 10 kg·Cu·ha-1 and 8 kg·Zn·ha-1, respectively.