The uncertainty of the mechanism motion error is mostly caused by the manufacturing process,so the motion error cannot be effectively predicted at the design phase.The problems of manufacturing complexity and the rela...The uncertainty of the mechanism motion error is mostly caused by the manufacturing process,so the motion error cannot be effectively predicted at the design phase.The problems of manufacturing complexity and the relationship between design and manufacturing are analyzed,and the influence of dimensional tolerance and fit tolerance on the motion accuracy of the system is considered in the design process.Then based on the Monte Carlo simulation,an optimal design model of planar linkage mechanism is set up.A typical offset slider-crank mechanism is used as an illustrative example to carry out the optimal design.Compared with the result of typical robustness design,the similar variation characteristics of the mean value and the standard deviation can be found,so the proposed method is effective.The method is furthermore applied in the optimization of the schemes with different fit tolerances and the prediction of motion errors in the design phase is achieved.A set of quantitative evaluation system for mechanism optimal design is provided.Finally,a basic strategy is presented to balance the motion precision and manufacturing cost.展开更多
In rigid mechanism dynamic analysis, the equivalence theorem is often used due to its simplicity and perceivability. Based on conjugation and duality between inertia energy storing element and elastic energy storing...In rigid mechanism dynamic analysis, the equivalence theorem is often used due to its simplicity and perceivability. Based on conjugation and duality between inertia energy storing element and elastic energy storing element, the equivalence theorem is used in elastic error analysis of planar mechanism. A set of calculation formula of elastic error is introduced, and these equations are similar in expression form to the rigid dynamic equation. To demonstrate the method developed, a computation example is given.展开更多
For the four-bar beating-up mechanism of air-jet loom,the plain bearing of linkage is the bearing with dynamic load,and is immersed in the lubricant-box.If the joint clearance is considered,the research on linkage mov...For the four-bar beating-up mechanism of air-jet loom,the plain bearing of linkage is the bearing with dynamic load,and is immersed in the lubricant-box.If the joint clearance is considered,the research on linkage movement could be very complicated.In this paper,the kinematic characteristics of four-bar beating-up mechanism with joint clearance were studied by analyzing the trace of journal center and the balance of radial,tangential forces,and bearing load.The region of principal vibration and its forming causes were discussed.And the results could interpret the measuring curves of four-bar beating-up mechanism completely.展开更多
The analytical solutions of the non-steady-state concentrations of species at a planar microelectrode are presented. These simple new approximate expressions of concentrations are valid for all values of time and poss...The analytical solutions of the non-steady-state concentrations of species at a planar microelectrode are presented. These simple new approximate expressions of concentrations are valid for all values of time and possible values of rate constants. Analytical equations are given to describe the current when the homogeneous equilibrium position lies heavily in favour of the electroinactive species. Working surfaces are presented for the variation of limiting current with a homogeneous kinetic parameter and equilibrium constant. Moreover, in this work we employ the Homotopy perturbation method to solve the boundary value problem.展开更多
In this paper, chemical mechanical planarization (CMP) of amorphous Ge2Sb2Te5 (a-GST) in acidic H2O2 slurry is investigated. It was found that the removal rate of a-GST is strongly dependent on H2O2 concentration ...In this paper, chemical mechanical planarization (CMP) of amorphous Ge2Sb2Te5 (a-GST) in acidic H2O2 slurry is investigated. It was found that the removal rate of a-GST is strongly dependent on H2O2 concentration and gradually increases with the increase in H2O2 concentration, but the static etch rate first increases and then slowly decreases with the increase in H2O2 concentration. To understand the chemical reaction behavior of H2O2 on the a-GST surface, the potentiodynamic polarization curve, surface morphology and cross-section of a-GST immersed in acidic slurry are measured and the results reveal that a-GST exhibits a from active to passive behavior for from low to high concentration of H2O2. Finally, a possible removal mechanism of a-GST in different concentrations of H2O2 in the acidic slurry is described.展开更多
There are clearances in mechanism because of manufacture and assembly error,which reduces operation life and working accuracy of mechanism and has a great impact on dynamical responses.At the moment,research in this a...There are clearances in mechanism because of manufacture and assembly error,which reduces operation life and working accuracy of mechanism and has a great impact on dynamical responses.At the moment,research in this area mainly focuses on single degree⁃of⁃freedom mechanism considering one clearance,while research of multi⁃DOF mechanism considering multi⁃clearance is less.With the purpose of studying the dynamical characteristics of complex multi⁃DOF mechanism with multi⁃clearances,a dynamic model was developed.The dynamic responses of 2⁃DOF mechanism with two clearances under different positions,values,and numbers of clearance were analyzed.The displacement,velocity,acceleration,collision force,and the axis trajectory at clearance were then given.In addition,there is a limited amount of literature on chaotic phenomena,which mainly focuses on the chaotic phenomena of end⁃effector of mechanism.But in this paper,the non⁃linear characteristics were analyzed by chaotic phenomenon of clearance joint,then chaotic phenomenon was identified by Poincarémappings and phase diagrams.Bifurcation diagrams were given.The results will offer a reliable technical support for the study of dynamical responses of planar mechanisms and the analysis of chaotic phenomena.展开更多
A method for automatically establishing a mathematical model of kinematic analysis to a planar mechanism with multiple joint and prismatic pair is presented. The breadth ( or depth ) first search spanning tree can b...A method for automatically establishing a mathematical model of kinematic analysis to a planar mechanism with multiple joint and prismatic pair is presented. The breadth ( or depth ) first search spanning tree can be obtained based on an adjacency matrix of the mechanism. Then the kinematic chain (or mechanism)'s basic loops can be obtained. On the basis of these basic loops, a mathematical model of kinematic analysis can be established and solved automatically. In the sense of a calculative mechanism, structural analysis of the kinematic chain relates to the kinematic analysis of a mechanism. Thus, an effective way is supplied to the given mechanism's kinematic analysis for automatic modeling and solving, and a method is supplied to the structural type to optimize kinematic synthesis.展开更多
A new method for solving the velocity analysis of a mechanism is presented. Central to the method is how to convert the probem of velocity analysis of a mechanism to one of static analysis. Application of the method t...A new method for solving the velocity analysis of a mechanism is presented. Central to the method is how to convert the probem of velocity analysis of a mechanism to one of static analysis. Application of the method to certain practical problems has advantages compared to conventional methods for both graphical and analytical solutions. For brevity an example of a planar mechanism only is presented.展开更多
This paper introduces realization method of kinematics analysis for the planar four bar mechanism based on the MFC. A mathematicat model is established by a simple and effective method, using the computer simulation t...This paper introduces realization method of kinematics analysis for the planar four bar mechanism based on the MFC. A mathematicat model is established by a simple and effective method, using the computer simulation technology can the dynamic demonstration mechanism taotion and automatic drawing trajectory curve of arbitrary point on the connecting rod, and can output various motion displacement, speed and acceleration diagram. The paper provides a simple way for motion analysis of planar four link.展开更多
The accumulative roll-bonding(ARB)process was applied on the strips of aluminum alloy 1050 in two processing conditions:cold ARB and warm ARB.The results of tensile tests and microhardness measurement show that the wa...The accumulative roll-bonding(ARB)process was applied on the strips of aluminum alloy 1050 in two processing conditions:cold ARB and warm ARB.The results of tensile tests and microhardness measurement show that the warm ARB process exhibits the lower tensile strength and microhardness,more homogeneous distribution of the microhardness,higher elongation,and especially superior planar isotropy of the tensile properties in comparison to the cold ARB,because of the intermediate heat treatment as well as the elevated temperature rolling in the warm ARB process.Furthermore,with increasing the cycles of both processes,the planar isotropy decreases progressively.展开更多
A 3D model of the spatial four-bar weft insertion mechanism was built with unigraphics NX(UG) according to the actual requirement,and dynamics simulation was carried out by importing the model into ADAMS.Without consi...A 3D model of the spatial four-bar weft insertion mechanism was built with unigraphics NX(UG) according to the actual requirement,and dynamics simulation was carried out by importing the model into ADAMS.Without considering the clearance,the motion characteristic curve of the sword belt was generated through ADAMS combined with MATLAB.In this paper the hinge between the rod and the sector gear was selected as an example with different values of clearance,outputting the motion characteristic curve of the sword belt.Finite element analysis(FEA)was conducted,the flexible body was generated by importing the forked frame into ANSYS,and flexible dynamics simulation was carried out by importing the flexible body into ADAMS to replace the rigid rod.A comprehensive comparison of the output characteristics of the sword belt was conducted in the consideration of the clearance or flexible.Analysis of the force on the left hinge of the rod was carried out with the ADAMS post processing module.With the same clearance,considering the flexibility,amplitude of fluctuation of the force on the hinge increased obviously.展开更多
In order to get atomic smooth rigid disk substrate surface, ultra-fined alumina slurry and nanometer silica slurry are prepared, and two steps chemical-mechanical polishing (CMP) of rigid disk substrate in the two s...In order to get atomic smooth rigid disk substrate surface, ultra-fined alumina slurry and nanometer silica slurry are prepared, and two steps chemical-mechanical polishing (CMP) of rigid disk substrate in the two slurries are studied. The results show that, during the first step CMP in the alumina slurry, a high material removal rate is reached, and the average roughness (Ra) and the average waviness (Wa) of the polished surfaces can be decreased from previous 1.4 nm and 1.6 nm to about 0.6 nm and 0.7 nm, respectively. By using the nanometer silica slurry and optimized polishing process parameters in the second step CMP, the Ra and the Wa of the polished surfaces can be further reduced to 0.038 nm and 0.06 am, respectively. Atom force microscopy (AFM) analysis shows that the final polished surfaces are ultra-smooth without micro-defects.展开更多
One of the major problems faced by hand amputees is the unavailability of a lightweight and powered multi-functional hand prosthesis. Under-actuated finger designs play a key role to make the hand prosthesis lightweig...One of the major problems faced by hand amputees is the unavailability of a lightweight and powered multi-functional hand prosthesis. Under-actuated finger designs play a key role to make the hand prosthesis lightweight. In this paper, a hand prosthesis with an under-actuated and self-adaptive finger mechanism is proposed. The proposed finger is capable to generate passively different flexion/extension angles for a proximal interphalangeal (PIP) joint and a distal interphalangeal (DIP) joint for each flexion angle of metacarpophalangeal (MCP) joint. In addition, DIP joint is capable to generate different angles for the same angle of PIP joint. Hand prosthesis is built on the proposed finger mechanism. The hand prosthesis enables user to grasp objects with various geometries by performing five grasping patterns. Thumb of the hand prosthesis includes opposition/apposition in addition to flexion/extension of MCP and interphalangeal (IP) joint. Kinematic analysis of the proposed finger has been carried out to verify the movable range of the joints. Simulations and experiments are carried out to verify the effectiveness of the proposed finger mechanism and the hand prosthesis.展开更多
In this study, a luggage door mechanism to be used in commercial vehicles such as midibuses and buses is designed and analyzed. The mechanism is designed as a parallel hinged system. Velocities, rotational veloci- tie...In this study, a luggage door mechanism to be used in commercial vehicles such as midibuses and buses is designed and analyzed. The mechanism is designed as a parallel hinged system. Velocities, rotational veloci- ties and rotational accelerations of selected points on the design are calculated. Furthermore, the experiment- tal model of the design is established and it is seen that the data taken from the model are compatible with the calculated results. The aim of this study is to design a mechanism with the minimal workspace so that the door can be utilized in narrow areas and the ergonomics of the luggage door is improved. Considering both commercial and passenger vehicle sales, vehicle interior and exterior trim features have an exceptionally important role in automotive industry, in addition to vehicle performance characteristics. In today’s compete- tive environment, parts used in a vehicle’s internal and external trim have to meet user demands in terms of ergonomics as well as aesthetics. Due to its similarity to a four-bar mechanism, kinematics analysis of the design was carried out based on a four-bar mechanism, which is used extensively in industry.展开更多
基金supported by the National Natural Science Foundation of China(No.51275365)the National High-tech R&D Program (863 Program ) (No. 2014AA041504)
文摘The uncertainty of the mechanism motion error is mostly caused by the manufacturing process,so the motion error cannot be effectively predicted at the design phase.The problems of manufacturing complexity and the relationship between design and manufacturing are analyzed,and the influence of dimensional tolerance and fit tolerance on the motion accuracy of the system is considered in the design process.Then based on the Monte Carlo simulation,an optimal design model of planar linkage mechanism is set up.A typical offset slider-crank mechanism is used as an illustrative example to carry out the optimal design.Compared with the result of typical robustness design,the similar variation characteristics of the mean value and the standard deviation can be found,so the proposed method is effective.The method is furthermore applied in the optimization of the schemes with different fit tolerances and the prediction of motion errors in the design phase is achieved.A set of quantitative evaluation system for mechanism optimal design is provided.Finally,a basic strategy is presented to balance the motion precision and manufacturing cost.
文摘In rigid mechanism dynamic analysis, the equivalence theorem is often used due to its simplicity and perceivability. Based on conjugation and duality between inertia energy storing element and elastic energy storing element, the equivalence theorem is used in elastic error analysis of planar mechanism. A set of calculation formula of elastic error is introduced, and these equations are similar in expression form to the rigid dynamic equation. To demonstrate the method developed, a computation example is given.
文摘For the four-bar beating-up mechanism of air-jet loom,the plain bearing of linkage is the bearing with dynamic load,and is immersed in the lubricant-box.If the joint clearance is considered,the research on linkage movement could be very complicated.In this paper,the kinematic characteristics of four-bar beating-up mechanism with joint clearance were studied by analyzing the trace of journal center and the balance of radial,tangential forces,and bearing load.The region of principal vibration and its forming causes were discussed.And the results could interpret the measuring curves of four-bar beating-up mechanism completely.
文摘The analytical solutions of the non-steady-state concentrations of species at a planar microelectrode are presented. These simple new approximate expressions of concentrations are valid for all values of time and possible values of rate constants. Analytical equations are given to describe the current when the homogeneous equilibrium position lies heavily in favour of the electroinactive species. Working surfaces are presented for the variation of limiting current with a homogeneous kinetic parameter and equilibrium constant. Moreover, in this work we employ the Homotopy perturbation method to solve the boundary value problem.
基金Project supported by the National Basic Research Program of China (Grant Nos. 2010CB934300, 2011CBA00607, and 2011CB9328004)the National Integrate Circuit Research Program of China (Grant No. 2009ZX02023-003)+2 种基金the National Natural Science Foundation of China (Grant Nos. 60906004, 60906003,61006087, 61076121, 61176122, and 61106001)the Science and Technology Council of Shanghai, China (Grant Nos. 11DZ2261000 and 11QA1407800)the Chinese Academy of Sciences (Grant No. 20110490761)
文摘In this paper, chemical mechanical planarization (CMP) of amorphous Ge2Sb2Te5 (a-GST) in acidic H2O2 slurry is investigated. It was found that the removal rate of a-GST is strongly dependent on H2O2 concentration and gradually increases with the increase in H2O2 concentration, but the static etch rate first increases and then slowly decreases with the increase in H2O2 concentration. To understand the chemical reaction behavior of H2O2 on the a-GST surface, the potentiodynamic polarization curve, surface morphology and cross-section of a-GST immersed in acidic slurry are measured and the results reveal that a-GST exhibits a from active to passive behavior for from low to high concentration of H2O2. Finally, a possible removal mechanism of a-GST in different concentrations of H2O2 in the acidic slurry is described.
基金Sponsored by the Shandong Key Research and Development Public Welfare Program(Grant No.2019GGX104011)the Natural Science Foundation of Shandong Province(Grant No.ZR2017MEE066).
文摘There are clearances in mechanism because of manufacture and assembly error,which reduces operation life and working accuracy of mechanism and has a great impact on dynamical responses.At the moment,research in this area mainly focuses on single degree⁃of⁃freedom mechanism considering one clearance,while research of multi⁃DOF mechanism considering multi⁃clearance is less.With the purpose of studying the dynamical characteristics of complex multi⁃DOF mechanism with multi⁃clearances,a dynamic model was developed.The dynamic responses of 2⁃DOF mechanism with two clearances under different positions,values,and numbers of clearance were analyzed.The displacement,velocity,acceleration,collision force,and the axis trajectory at clearance were then given.In addition,there is a limited amount of literature on chaotic phenomena,which mainly focuses on the chaotic phenomena of end⁃effector of mechanism.But in this paper,the non⁃linear characteristics were analyzed by chaotic phenomenon of clearance joint,then chaotic phenomenon was identified by Poincarémappings and phase diagrams.Bifurcation diagrams were given.The results will offer a reliable technical support for the study of dynamical responses of planar mechanisms and the analysis of chaotic phenomena.
基金supported by the Foundation for Docotors of Xiangtan University under Grant No. 08QDZ42the Project of Engineering Research Center of Ministry of Education under Grant No. 09-FZGJ04
文摘A method for automatically establishing a mathematical model of kinematic analysis to a planar mechanism with multiple joint and prismatic pair is presented. The breadth ( or depth ) first search spanning tree can be obtained based on an adjacency matrix of the mechanism. Then the kinematic chain (or mechanism)'s basic loops can be obtained. On the basis of these basic loops, a mathematical model of kinematic analysis can be established and solved automatically. In the sense of a calculative mechanism, structural analysis of the kinematic chain relates to the kinematic analysis of a mechanism. Thus, an effective way is supplied to the given mechanism's kinematic analysis for automatic modeling and solving, and a method is supplied to the structural type to optimize kinematic synthesis.
文摘A new method for solving the velocity analysis of a mechanism is presented. Central to the method is how to convert the probem of velocity analysis of a mechanism to one of static analysis. Application of the method to certain practical problems has advantages compared to conventional methods for both graphical and analytical solutions. For brevity an example of a planar mechanism only is presented.
文摘This paper introduces realization method of kinematics analysis for the planar four bar mechanism based on the MFC. A mathematicat model is established by a simple and effective method, using the computer simulation technology can the dynamic demonstration mechanism taotion and automatic drawing trajectory curve of arbitrary point on the connecting rod, and can output various motion displacement, speed and acceleration diagram. The paper provides a simple way for motion analysis of planar four link.
文摘The accumulative roll-bonding(ARB)process was applied on the strips of aluminum alloy 1050 in two processing conditions:cold ARB and warm ARB.The results of tensile tests and microhardness measurement show that the warm ARB process exhibits the lower tensile strength and microhardness,more homogeneous distribution of the microhardness,higher elongation,and especially superior planar isotropy of the tensile properties in comparison to the cold ARB,because of the intermediate heat treatment as well as the elevated temperature rolling in the warm ARB process.Furthermore,with increasing the cycles of both processes,the planar isotropy decreases progressively.
基金National Natural Science Foundation of China(No.51175475)Natural Science Foundation of Zhejiang Province,China(No.LY14E050027)
文摘A 3D model of the spatial four-bar weft insertion mechanism was built with unigraphics NX(UG) according to the actual requirement,and dynamics simulation was carried out by importing the model into ADAMS.Without considering the clearance,the motion characteristic curve of the sword belt was generated through ADAMS combined with MATLAB.In this paper the hinge between the rod and the sector gear was selected as an example with different values of clearance,outputting the motion characteristic curve of the sword belt.Finite element analysis(FEA)was conducted,the flexible body was generated by importing the forked frame into ANSYS,and flexible dynamics simulation was carried out by importing the flexible body into ADAMS to replace the rigid rod.A comprehensive comparison of the output characteristics of the sword belt was conducted in the consideration of the clearance or flexible.Analysis of the force on the left hinge of the rod was carried out with the ADAMS post processing module.With the same clearance,considering the flexibility,amplitude of fluctuation of the force on the hinge increased obviously.
基金This project is supported by National Basic Research Program of China (973 Program, N0.2003CB716201)National Natural Science Foundation of China (No.50575131)Science Foundation of Shanghai Municipal Commission of Science and Technology, China(No.0452nm013).
文摘In order to get atomic smooth rigid disk substrate surface, ultra-fined alumina slurry and nanometer silica slurry are prepared, and two steps chemical-mechanical polishing (CMP) of rigid disk substrate in the two slurries are studied. The results show that, during the first step CMP in the alumina slurry, a high material removal rate is reached, and the average roughness (Ra) and the average waviness (Wa) of the polished surfaces can be decreased from previous 1.4 nm and 1.6 nm to about 0.6 nm and 0.7 nm, respectively. By using the nanometer silica slurry and optimized polishing process parameters in the second step CMP, the Ra and the Wa of the polished surfaces can be further reduced to 0.038 nm and 0.06 am, respectively. Atom force microscopy (AFM) analysis shows that the final polished surfaces are ultra-smooth without micro-defects.
文摘One of the major problems faced by hand amputees is the unavailability of a lightweight and powered multi-functional hand prosthesis. Under-actuated finger designs play a key role to make the hand prosthesis lightweight. In this paper, a hand prosthesis with an under-actuated and self-adaptive finger mechanism is proposed. The proposed finger is capable to generate passively different flexion/extension angles for a proximal interphalangeal (PIP) joint and a distal interphalangeal (DIP) joint for each flexion angle of metacarpophalangeal (MCP) joint. In addition, DIP joint is capable to generate different angles for the same angle of PIP joint. Hand prosthesis is built on the proposed finger mechanism. The hand prosthesis enables user to grasp objects with various geometries by performing five grasping patterns. Thumb of the hand prosthesis includes opposition/apposition in addition to flexion/extension of MCP and interphalangeal (IP) joint. Kinematic analysis of the proposed finger has been carried out to verify the movable range of the joints. Simulations and experiments are carried out to verify the effectiveness of the proposed finger mechanism and the hand prosthesis.
文摘In this study, a luggage door mechanism to be used in commercial vehicles such as midibuses and buses is designed and analyzed. The mechanism is designed as a parallel hinged system. Velocities, rotational veloci- ties and rotational accelerations of selected points on the design are calculated. Furthermore, the experiment- tal model of the design is established and it is seen that the data taken from the model are compatible with the calculated results. The aim of this study is to design a mechanism with the minimal workspace so that the door can be utilized in narrow areas and the ergonomics of the luggage door is improved. Considering both commercial and passenger vehicle sales, vehicle interior and exterior trim features have an exceptionally important role in automotive industry, in addition to vehicle performance characteristics. In today’s compete- tive environment, parts used in a vehicle’s internal and external trim have to meet user demands in terms of ergonomics as well as aesthetics. Due to its similarity to a four-bar mechanism, kinematics analysis of the design was carried out based on a four-bar mechanism, which is used extensively in industry.