The uncertainty of the mechanism motion error is mostly caused by the manufacturing process,so the motion error cannot be effectively predicted at the design phase.The problems of manufacturing complexity and the rela...The uncertainty of the mechanism motion error is mostly caused by the manufacturing process,so the motion error cannot be effectively predicted at the design phase.The problems of manufacturing complexity and the relationship between design and manufacturing are analyzed,and the influence of dimensional tolerance and fit tolerance on the motion accuracy of the system is considered in the design process.Then based on the Monte Carlo simulation,an optimal design model of planar linkage mechanism is set up.A typical offset slider-crank mechanism is used as an illustrative example to carry out the optimal design.Compared with the result of typical robustness design,the similar variation characteristics of the mean value and the standard deviation can be found,so the proposed method is effective.The method is furthermore applied in the optimization of the schemes with different fit tolerances and the prediction of motion errors in the design phase is achieved.A set of quantitative evaluation system for mechanism optimal design is provided.Finally,a basic strategy is presented to balance the motion precision and manufacturing cost.展开更多
There are clearances in mechanism because of manufacture and assembly error,which reduces operation life and working accuracy of mechanism and has a great impact on dynamical responses.At the moment,research in this a...There are clearances in mechanism because of manufacture and assembly error,which reduces operation life and working accuracy of mechanism and has a great impact on dynamical responses.At the moment,research in this area mainly focuses on single degree⁃of⁃freedom mechanism considering one clearance,while research of multi⁃DOF mechanism considering multi⁃clearance is less.With the purpose of studying the dynamical characteristics of complex multi⁃DOF mechanism with multi⁃clearances,a dynamic model was developed.The dynamic responses of 2⁃DOF mechanism with two clearances under different positions,values,and numbers of clearance were analyzed.The displacement,velocity,acceleration,collision force,and the axis trajectory at clearance were then given.In addition,there is a limited amount of literature on chaotic phenomena,which mainly focuses on the chaotic phenomena of end⁃effector of mechanism.But in this paper,the non⁃linear characteristics were analyzed by chaotic phenomenon of clearance joint,then chaotic phenomenon was identified by Poincarémappings and phase diagrams.Bifurcation diagrams were given.The results will offer a reliable technical support for the study of dynamical responses of planar mechanisms and the analysis of chaotic phenomena.展开更多
基金supported by the National Natural Science Foundation of China(No.51275365)the National High-tech R&D Program (863 Program ) (No. 2014AA041504)
文摘The uncertainty of the mechanism motion error is mostly caused by the manufacturing process,so the motion error cannot be effectively predicted at the design phase.The problems of manufacturing complexity and the relationship between design and manufacturing are analyzed,and the influence of dimensional tolerance and fit tolerance on the motion accuracy of the system is considered in the design process.Then based on the Monte Carlo simulation,an optimal design model of planar linkage mechanism is set up.A typical offset slider-crank mechanism is used as an illustrative example to carry out the optimal design.Compared with the result of typical robustness design,the similar variation characteristics of the mean value and the standard deviation can be found,so the proposed method is effective.The method is furthermore applied in the optimization of the schemes with different fit tolerances and the prediction of motion errors in the design phase is achieved.A set of quantitative evaluation system for mechanism optimal design is provided.Finally,a basic strategy is presented to balance the motion precision and manufacturing cost.
基金Sponsored by the Shandong Key Research and Development Public Welfare Program(Grant No.2019GGX104011)the Natural Science Foundation of Shandong Province(Grant No.ZR2017MEE066).
文摘There are clearances in mechanism because of manufacture and assembly error,which reduces operation life and working accuracy of mechanism and has a great impact on dynamical responses.At the moment,research in this area mainly focuses on single degree⁃of⁃freedom mechanism considering one clearance,while research of multi⁃DOF mechanism considering multi⁃clearance is less.With the purpose of studying the dynamical characteristics of complex multi⁃DOF mechanism with multi⁃clearances,a dynamic model was developed.The dynamic responses of 2⁃DOF mechanism with two clearances under different positions,values,and numbers of clearance were analyzed.The displacement,velocity,acceleration,collision force,and the axis trajectory at clearance were then given.In addition,there is a limited amount of literature on chaotic phenomena,which mainly focuses on the chaotic phenomena of end⁃effector of mechanism.But in this paper,the non⁃linear characteristics were analyzed by chaotic phenomenon of clearance joint,then chaotic phenomenon was identified by Poincarémappings and phase diagrams.Bifurcation diagrams were given.The results will offer a reliable technical support for the study of dynamical responses of planar mechanisms and the analysis of chaotic phenomena.