A method for improving dynamic characteristics of planar linkages by activelyvarying the speed function of the input link is presented. Design criteria and constraints for thedynamic design of variable speed planar li...A method for improving dynamic characteristics of planar linkages by activelyvarying the speed function of the input link is presented. Design criteria and constraints for thedynamic design of variable speed planar linkages are developed. Both analytical and optimizationapproaches for determining suitable input speed functions to minimize the driving torque, theshaking moment, or both simultaneously of planar linkages, subject to various design requirementsand constraints, are derived. Finally, some examples are given to illustrate the design procedureand to verify its feasibility.展开更多
The uncertainty of the mechanism motion error is mostly caused by the manufacturing process,so the motion error cannot be effectively predicted at the design phase.The problems of manufacturing complexity and the rela...The uncertainty of the mechanism motion error is mostly caused by the manufacturing process,so the motion error cannot be effectively predicted at the design phase.The problems of manufacturing complexity and the relationship between design and manufacturing are analyzed,and the influence of dimensional tolerance and fit tolerance on the motion accuracy of the system is considered in the design process.Then based on the Monte Carlo simulation,an optimal design model of planar linkage mechanism is set up.A typical offset slider-crank mechanism is used as an illustrative example to carry out the optimal design.Compared with the result of typical robustness design,the similar variation characteristics of the mean value and the standard deviation can be found,so the proposed method is effective.The method is furthermore applied in the optimization of the schemes with different fit tolerances and the prediction of motion errors in the design phase is achieved.A set of quantitative evaluation system for mechanism optimal design is provided.Finally,a basic strategy is presented to balance the motion precision and manufacturing cost.展开更多
By using transfer matrix,the lower-order natural frequencies of the Watt type planar six-barlinkage are calculated in this paper.The experiment of the modal analysis is done with the SignalProcessor 7T17S,and the expe...By using transfer matrix,the lower-order natural frequencies of the Watt type planar six-barlinkage are calculated in this paper.The experiment of the modal analysis is done with the SignalProcessor 7T17S,and the experiment results agree with the calculated ones.This method only re-quires calculation of lower-order transfer matrix and determinant values,so that, it can be done ona minicomputer such as IBM/PC.The method adopted in this paper is also suitable for vibrationanalysis of other types of linkages.展开更多
This paper relates to the deep research on the Splinc Model Method of KED analysis. With the use of cubic B-splinc function as a link’s transverse deflection interpolation function, the principle of virtual displacem...This paper relates to the deep research on the Splinc Model Method of KED analysis. With the use of cubic B-splinc function as a link’s transverse deflection interpolation function, the principle of virtual displacement is presented as a basic theory for the general formulation of the equations of motion, and thus abandoned the kinematic assumption and the instantaneous structure assumption which arc used in the Spline Model Method. In thc same time, the nonlinear terms sue as coupling terms between thc rigid body motion and elastic deformation arc included. New member’s spline models are established. Mass matrix, Coriolis mass matrix, normal and tangential mass matrix, linear stiffness matrix, nonlinear stiffness matrix and rotation matrix arc derived. The kinematic differential equations of a member and system are deduced in the end. The Newmark direct integration method is used as the solution scheme of the kinematic differential equations to get the periodic response.展开更多
There are clearances in mechanism because of manufacture and assembly error,which reduces operation life and working accuracy of mechanism and has a great impact on dynamical responses.At the moment,research in this a...There are clearances in mechanism because of manufacture and assembly error,which reduces operation life and working accuracy of mechanism and has a great impact on dynamical responses.At the moment,research in this area mainly focuses on single degree⁃of⁃freedom mechanism considering one clearance,while research of multi⁃DOF mechanism considering multi⁃clearance is less.With the purpose of studying the dynamical characteristics of complex multi⁃DOF mechanism with multi⁃clearances,a dynamic model was developed.The dynamic responses of 2⁃DOF mechanism with two clearances under different positions,values,and numbers of clearance were analyzed.The displacement,velocity,acceleration,collision force,and the axis trajectory at clearance were then given.In addition,there is a limited amount of literature on chaotic phenomena,which mainly focuses on the chaotic phenomena of end⁃effector of mechanism.But in this paper,the non⁃linear characteristics were analyzed by chaotic phenomenon of clearance joint,then chaotic phenomenon was identified by Poincarémappings and phase diagrams.Bifurcation diagrams were given.The results will offer a reliable technical support for the study of dynamical responses of planar mechanisms and the analysis of chaotic phenomena.展开更多
Based on the geometrical relation between the relative pole and the rotationangles of links in the four-bar linkage, a third order algebraic equation withsingle variable for the closed form solution of planar function...Based on the geometrical relation between the relative pole and the rotationangles of links in the four-bar linkage, a third order algebraic equation withsingle variable for the closed form solution of planar function generators hasbeen derived by using computer symbolic manipulating technique. The newlydeveloped solution method eliminates the requirement of solving system ofnoulinear equations. All solutions of the problem can be obtained directly andeasily without the need of initial values. A numerical example is givendemonstratiap the efficiency and the advantages of this method.展开更多
基于V isua l B asic 6.0的计算机动画仿真技术,实现平面低副连杆机构Ⅲ级杆组模块、原动件模块的计算和画图程序;在原动件运动给定后,任意连接Ⅱ级杆组构成平面低副连杆机构;调用相应的计算和画图程序,实现平面低副连杆机构的动画仿真...基于V isua l B asic 6.0的计算机动画仿真技术,实现平面低副连杆机构Ⅲ级杆组模块、原动件模块的计算和画图程序;在原动件运动给定后,任意连接Ⅱ级杆组构成平面低副连杆机构;调用相应的计算和画图程序,实现平面低副连杆机构的动画仿真和运动分析图形。展开更多
基金This project is supported by National Natural Science Foundation of China(No.50405004, No.50335040).
文摘A method for improving dynamic characteristics of planar linkages by activelyvarying the speed function of the input link is presented. Design criteria and constraints for thedynamic design of variable speed planar linkages are developed. Both analytical and optimizationapproaches for determining suitable input speed functions to minimize the driving torque, theshaking moment, or both simultaneously of planar linkages, subject to various design requirementsand constraints, are derived. Finally, some examples are given to illustrate the design procedureand to verify its feasibility.
基金supported by the National Natural Science Foundation of China(No.51275365)the National High-tech R&D Program (863 Program ) (No. 2014AA041504)
文摘The uncertainty of the mechanism motion error is mostly caused by the manufacturing process,so the motion error cannot be effectively predicted at the design phase.The problems of manufacturing complexity and the relationship between design and manufacturing are analyzed,and the influence of dimensional tolerance and fit tolerance on the motion accuracy of the system is considered in the design process.Then based on the Monte Carlo simulation,an optimal design model of planar linkage mechanism is set up.A typical offset slider-crank mechanism is used as an illustrative example to carry out the optimal design.Compared with the result of typical robustness design,the similar variation characteristics of the mean value and the standard deviation can be found,so the proposed method is effective.The method is furthermore applied in the optimization of the schemes with different fit tolerances and the prediction of motion errors in the design phase is achieved.A set of quantitative evaluation system for mechanism optimal design is provided.Finally,a basic strategy is presented to balance the motion precision and manufacturing cost.
文摘By using transfer matrix,the lower-order natural frequencies of the Watt type planar six-barlinkage are calculated in this paper.The experiment of the modal analysis is done with the SignalProcessor 7T17S,and the experiment results agree with the calculated ones.This method only re-quires calculation of lower-order transfer matrix and determinant values,so that, it can be done ona minicomputer such as IBM/PC.The method adopted in this paper is also suitable for vibrationanalysis of other types of linkages.
文摘This paper relates to the deep research on the Splinc Model Method of KED analysis. With the use of cubic B-splinc function as a link’s transverse deflection interpolation function, the principle of virtual displacement is presented as a basic theory for the general formulation of the equations of motion, and thus abandoned the kinematic assumption and the instantaneous structure assumption which arc used in the Spline Model Method. In thc same time, the nonlinear terms sue as coupling terms between thc rigid body motion and elastic deformation arc included. New member’s spline models are established. Mass matrix, Coriolis mass matrix, normal and tangential mass matrix, linear stiffness matrix, nonlinear stiffness matrix and rotation matrix arc derived. The kinematic differential equations of a member and system are deduced in the end. The Newmark direct integration method is used as the solution scheme of the kinematic differential equations to get the periodic response.
基金Sponsored by the Shandong Key Research and Development Public Welfare Program(Grant No.2019GGX104011)the Natural Science Foundation of Shandong Province(Grant No.ZR2017MEE066).
文摘There are clearances in mechanism because of manufacture and assembly error,which reduces operation life and working accuracy of mechanism and has a great impact on dynamical responses.At the moment,research in this area mainly focuses on single degree⁃of⁃freedom mechanism considering one clearance,while research of multi⁃DOF mechanism considering multi⁃clearance is less.With the purpose of studying the dynamical characteristics of complex multi⁃DOF mechanism with multi⁃clearances,a dynamic model was developed.The dynamic responses of 2⁃DOF mechanism with two clearances under different positions,values,and numbers of clearance were analyzed.The displacement,velocity,acceleration,collision force,and the axis trajectory at clearance were then given.In addition,there is a limited amount of literature on chaotic phenomena,which mainly focuses on the chaotic phenomena of end⁃effector of mechanism.But in this paper,the non⁃linear characteristics were analyzed by chaotic phenomenon of clearance joint,then chaotic phenomenon was identified by Poincarémappings and phase diagrams.Bifurcation diagrams were given.The results will offer a reliable technical support for the study of dynamical responses of planar mechanisms and the analysis of chaotic phenomena.
文摘Based on the geometrical relation between the relative pole and the rotationangles of links in the four-bar linkage, a third order algebraic equation withsingle variable for the closed form solution of planar function generators hasbeen derived by using computer symbolic manipulating technique. The newlydeveloped solution method eliminates the requirement of solving system ofnoulinear equations. All solutions of the problem can be obtained directly andeasily without the need of initial values. A numerical example is givendemonstratiap the efficiency and the advantages of this method.