Two-photon photodynamic therapy(TP-PDT)has garnered significant attention because of its excellent depth of tissue penetration and high spatiotemporal selectivity.However,the limited targeting ability and oxygen depen...Two-photon photodynamic therapy(TP-PDT)has garnered significant attention because of its excellent depth of tissue penetration and high spatiotemporal selectivity.However,the limited targeting ability and oxygen dependency of photosensitizers(PSs)significantly hinder the effectiveness of photodynamic therapy in hypoxic tumor treatment.Herein,we designed and synthesized two lipid droplet(LD)-targeted two-photon PSs(TBPCP and TBCP)by reducing benzene rings to achieve“acceptor planarization”.Notably,acceptor planarization not only enhanced the intramolecular charge transfer but also transferred the photochemical reaction from typeⅡ(TBPCP)to typeⅠ(TBCP).Under the irradiation of 940 nm femtosecond pulsed laser,TBPCP and TBCP showed bright two-photon-excited fluorescence and excellent LD targeting in living cells.Comparing TBPCP(typeⅡPS),the outstanding TP-PDT efficacy of TBCP(typeⅠPS)under hypoxic conditions could be obtained in both cellular experiments and multicellular tumor spheroids(MCTS)model.Additionally,both TBPCP and TBCP could induce the lipid peroxidation in the typeⅠor typeⅡPDT due to the location of LD,depleting GSH and inactivating GPX4 to induce nonprogrammed ferroptosis in cells.展开更多
Significant progress has been achieved for all-polymer solar cells(APSCs)in the last few years by the use of polymerized small molecular acceptors(PSMAs).Developing high electron mobility polymer acceptors has been co...Significant progress has been achieved for all-polymer solar cells(APSCs)in the last few years by the use of polymerized small molecular acceptors(PSMAs).Developing high electron mobility polymer acceptors has been considered a feasible solution to further improve the photovoltaic performance of APSCs and fabricate thick film devices,which contributed to roll-to-roll printing techniques.In this work,we designed and synthesized PSV,an A-DA’D-A small molecule acceptor-based PSMA with the vinyl group as a bridged linkage to reduce the steric hindrance between the 1,1-dicyanomethylene-3-indanone(IC)terminal group.In comparison with the C-C bond linked polymer acceptor PS,PSV exhibits an almost planar conjugated framework and well-ordered molecular stacking in the thin film.Moreover,PSV exhibits superior n-type semiconducting properties with high electron mobility of up to 0.54 cm^(2)·V^(−1)·s^(−1),which is the highest value among reported PSMAs.By utilizing PM6 as a polymer donor,PSV-based blend forms a favorable nanomorphology and exhibits high and well-balanced hole/electron mobilities,which is beneficial for exciton separation and charge transport.Consequently,APSCs based on PM6:PSV achieved high power conversion efficiencies of up to 15.73%,with a simultaneously realized high Voc of 0.923 V,Jsc of 23.2 mA·cm^(-2),and FF of 0.734.Such superior features enable PSV with excellent thickness-insensitive properties and over 13%PCE was obtained at 300 nm.To the best of our knowledge,the high PCE of 15.73%with excellent electron mobility of 0.54 cm^(2)·V^(−1)·s^(−1)is the highest values reported for APSCs.These results point to the great significance of developing polymer acceptors with a high electron mobility for boosting the performance of APSCs.展开更多
Conventional hyperspectral cameras cascade lenses and spectrometers to acquire the spectral datacube,which forms the fundamental framework for hyperspectral imaging.However,this cascading framework involves tradeoffs ...Conventional hyperspectral cameras cascade lenses and spectrometers to acquire the spectral datacube,which forms the fundamental framework for hyperspectral imaging.However,this cascading framework involves tradeoffs among spectral and imaging performances when the system is driven toward miniaturization.Here,we propose a spectral singlet lens that unifies optical imaging and computational spectrometry functions,enabling the creation of minimalist,miniaturized and high-performance hyperspectral cameras.As a paradigm,we capitalize on planar liquid crystal optics to implement the proposed framework,with each liquid-crystal unit cell acting as both phase modulator and electrically tunable spectral filter.Experiments with various targets show that the resulting millimeter-scale hyperspectral camera exhibits both high spectral fidelity(>95%)and high spatial resolutions(~1.7 times the diffraction limit).The proposed“two-in-one”framework can resolve the conflicts between spectral and imaging resolutions,which paves a practical pathway for advancing hyperspectral imaging systems toward miniaturization and portable applications.展开更多
Magneto-optical traps (MOTs) composed of magnetic fields and light fields have been widely utilized to cool andconfine microscopic particles. Practical technology applications require miniaturized MOTs. The advancemen...Magneto-optical traps (MOTs) composed of magnetic fields and light fields have been widely utilized to cool andconfine microscopic particles. Practical technology applications require miniaturized MOTs. The advancement of planaroptics has promoted the development of compact MOTs. In this article, we review the development of compact MOTs basedon planar optics. First, we introduce the standardMOTs. We then introduce the gratingMOTs with micron structures, whichhave been used to build cold atomic clocks, cold atomic interferometers, and ultra-cold sources. Further, we introducethe integrated MOTs based on nano-scale metasurfaces. These new compact MOTs greatly reduce volume and powerconsumption, and provide new opportunities for fundamental research and practical applications.展开更多
We study a generalized higher-order nonlinear Schr¨odinger equation in an optical fiber or a planar waveguide.We obtain the Lax pair and N-fold Darboux transformation(DT)with N being a positive integer.Based on L...We study a generalized higher-order nonlinear Schr¨odinger equation in an optical fiber or a planar waveguide.We obtain the Lax pair and N-fold Darboux transformation(DT)with N being a positive integer.Based on Lax pair obtained by us,we derive the infinitely-many conservation laws.We give the bright one-,two-,and N-soliton solutions,and the first-,second-,and Nth-order breather solutions based on the N-fold DT.We conclude that the velocities of the bright solitons are influenced by the distributed gain function,g(z),and variable coefficients in equation,h1(z),p1(z),r1(z),and s1(z)via the asymptotic analysis,where z represents the propagation variable or spatial coordinate.We also graphically observe that:the velocities of the first-and second-order breathers will be affected by h1(z),p1(z),r1(z),and s1(z),and the background wave depends on g(z).展开更多
We systematically investigate in-plane transport properties of ternary chalcogenideBi_(2)Rh_(3)Se_(2).Upon rotating the magnetic field within the plane of the sample, one can distinctly detect the presence of both pla...We systematically investigate in-plane transport properties of ternary chalcogenideBi_(2)Rh_(3)Se_(2).Upon rotating the magnetic field within the plane of the sample, one can distinctly detect the presence of both planar Hall resistance and anisotropic longitudinal resistance, and the phenomena appeared are precisely described by the theoretical formulation of the planar Hall effect (PHE). In addition, anisotropic orbital magnetoresistance rather than topologically nontrivial chiral anomalies dominates the PHE in Bi_(2)Rh_(3)Se_(2). The finding not only provides another platform for understanding the mechanism of PHE, but could also be beneficial for future planar Hall sensors based on two-dimensional materials.展开更多
This paper examines GaSb short-wavelength infrared detectors employing planar PN junctions. The fabrication was based on the Zn diffusion process and the diffusion temperature was optimized. Characterization revealed ...This paper examines GaSb short-wavelength infrared detectors employing planar PN junctions. The fabrication was based on the Zn diffusion process and the diffusion temperature was optimized. Characterization revealed a 50% cut-off wavelength of 1.73 μm, a maximum detectivity of 8.73 × 10^(10) cm·Hz^(1/2)/W, and a minimum dark current density of 1.02 × 10^(-5) A/cm^(2).Additionally, a maximum quantum efficiency of 60.3% was achieved. Subsequent optimization of fabrication enabled the realization of a 320 × 256 focal plane array that exhibited satisfactory imaging results. Remarkably, the GaSb planar detectors demonstrated potential in low-cost short wavelength infrared imaging, without requiring material epitaxy or deposition.展开更多
The damage of rock joints or fractures upon shear includes the surface damage occurring at the contact asperities and the damage beneath the shear surface within the host rock.The latter is commonly known as off-fault...The damage of rock joints or fractures upon shear includes the surface damage occurring at the contact asperities and the damage beneath the shear surface within the host rock.The latter is commonly known as off-fault damage and has been much less investigated than the surface damage.The main contribution of this study is to compare the results of direct shear tests conducted on saw-cut planar joints and tension-induced rough granite joints under normal stresses ranging from 1 MPa to 50 MPa.The shear-induced off-fault damages are quantified and compared with the optical microscope observation.Our results clearly show that the planar joints slip stably under all the normal stresses except under 50 MPa,where some local fractures and regular stick-slip occur towards the end of the test.Both post-peak stress drop and stick-slip occur for all the rough joints.The residual shear strength envelopes for the rough joints and the peak shear strength envelope for the planar joints almost overlap.The root mean square(RMS)of asperity height for the rough joints decreases while it increases for the planar joint after shear,and a larger normal stress usually leads to a more significant decrease or increase in RMS.Besides,the extent of off-fault damage(or damage zone)increases with normal stress for both planar and rough joints,and it is restricted to a very thin layer with limited micro-cracks beneath the planar joint surface.In comparison,the thickness of the damage zone for the rough joints is about an order of magnitude larger than that of the planar joints,and the coalesced micro-cracks are generally inclined to the shear direction with acute angles.The findings obtained in this study contribute to a better understanding on the frictional behavior and damage characteristics of rock joints or fractures with different roughness.展开更多
The use of redox-active organic electrode materials in energy storage is restricted due to their inferior solvent resistance,abysmal conductivity,and the resultant low practical capacity.To address these issues,a clas...The use of redox-active organic electrode materials in energy storage is restricted due to their inferior solvent resistance,abysmal conductivity,and the resultant low practical capacity.To address these issues,a class of bipolar p-phenylenediimidazole-based small-molecule compounds are designed and fabricated.Theπ-conjugated backbone of these small molecules allows for electron delocalization on a big conjugation plane,endowing them with good conductivity and reaction reversibility.Furthermore,when the para-positions of phenylene are occupied by hydroxyl groups,as-formed intramolecular hydrogen bonds(N-H...O)between phenolic hydroxyl groups and the–NH groups of imidazole rings further enhance the structural planarity,resulting in higherπ-conjugation degree and better conductivity,and thus higher utilization of active sites and electrode capacity,proved by both experimental results and theoretical calculations.The optimized composite electrode DBNQ@rGO-45 shows a high specific capacity(∼308 mA h g^(−1)at 100 mA g^(−1))and a long cycling stability(112.9 mA h g^(−1)after 6000 cycles at 2000 mA g^(−1)).The significantly better electrochemical properties for hydroxyl group-containing compounds than those without hydroxyl groups attributed to intramolecular hydrogen bond-induced conjugation enhancement will inspire the structure design of organic electrodes for better energy storage.展开更多
Planar sliding is one of the frequently observed types of failure in rock slopes.Kinematic analysis is a classic and widely used method to examine the potential failure modes in rock masses.The accuracy of planar slid...Planar sliding is one of the frequently observed types of failure in rock slopes.Kinematic analysis is a classic and widely used method to examine the potential failure modes in rock masses.The accuracy of planar sliding kinematic analysis is significantly influenced by the value assigned to the lateral limit angleγlim.However,the assignment ofγlim is currently used generally based on an empirical criterion.This study aims to propose an approach for determining the value ofγlim in deterministic and probabilistic kinematic planar sliding analysis.A new perspective is presented to reveal thatγlim essentially influences the probability of forming a potential planar sliding block.The procedure to calculate this probability is introduced using the block theory method.It is found that the probability is correlated with the number of discontinuity sets presented in rock masses.Thus,different values ofγlim for rock masses with different sets of discontinuities are recommended in both probabilistic and deterministic planar sliding kinematic analyses;whereas a fixed value ofγlim is commonly assigned to different types of rock masses in traditional method.Finally,an engineering case was used to compare the proposed and traditional kinematic analysis methods.The error rates of the traditional method vary from 45%to 119%,while that of the proposed method ranges between 1%and 17%.Therefore,it is likely that the proposed method is superior to the traditional one.展开更多
The integration method of exploding foil initiator system(EFIs) used to be researched to broaden its application range in military and aerospace in the last few decades.In order to lower the firing voltage below 1 kV,...The integration method of exploding foil initiator system(EFIs) used to be researched to broaden its application range in military and aerospace in the last few decades.In order to lower the firing voltage below 1 kV,an integrated EFIs with enhanced energy efficiency was designed.Corresponding exploding foil initiator chips were fabricated in batch via micro electromechanical systems technology by integrating a unified foil,a flyer layer and a barrel on a glass substrate successively,meanwhile its package of the whole system was proposed at a volume of 2.194 cm^(3).The structural parameters were determined by predicted performance including flyer velocity,impact behavior and conduction property via the proposed theoretical models and the static electric field simulation.As expect,this integrated EFIs exhibited excellent functions,which could accelerate the flyer to a terminal velocity over 4 km/s and preeminently initiate HNS-IV pellet at a circuit of 0.24 μF/0.9 kV.Furthermore,the theoretical design,fabrication and performance test have been all included to validate the feasibility of this integrated EFIs that was beneficial for its commercial development in the future.展开更多
Mutual effects between a gliding arc(GA)discharge at atmospheric pressure and a premixed CH_(4)/air flame were experimentally investigated.Effects of the flame on the GA were studied using simultaneous measurements of...Mutual effects between a gliding arc(GA)discharge at atmospheric pressure and a premixed CH_(4)/air flame were experimentally investigated.Effects of the flame on the GA were studied using simultaneous measurements of the current,the voltage,and the instantaneous images of the plasma columns.The GA in the flame has a thicker and more diffusive plasma column,and it is more frequently ignited at a smaller breakdown voltage than that in the air.The GA extension velocity and the gliding velocity in the flame are larger than those in the air.The electrode voltage drop of the GA discharge in the flame is about 160 V,whereas that in the air is about 220 V.Compared with the GA in the air,the different features of the GA in the flame can be explained by high-temperature,weakly ionized,and species-abundant environment that are generated by the premixed CH_(4)/air flame.Effects of the gliding arc discharge on the premixed flames were demonstrated using planar laser-induced fluorescence of hydroxyl radicals(OH)and formaldehyde(CH_(2)O).OH and CH_(2)O can be formed in the CH_(4)/air mixture in the presence of the GA due to kinetic effects,and the increase of OH and CH_(2)O shows the great potential of the GA for combustion enhancement.展开更多
Systemically angular and planar transport investigations are performed in layered antiferromagnetic(AF)V_(5)S_(8).In this AF system,obvious anomalous Hall effect(AHE)is observed with a large Hall angle of 0.1 compared...Systemically angular and planar transport investigations are performed in layered antiferromagnetic(AF)V_(5)S_(8).In this AF system,obvious anomalous Hall effect(AHE)is observed with a large Hall angle of 0.1 compared to that in ferromagnetic(FM)system.It can persist to the temperatures above AF transition and exhibit strong angular field dependence.The phase diagram reveals various magnetic states by rotating the applied field.By analyzing the anisotropic transport behavior,magnon contributions are revealed and exhibit obvious angular dependence with a spin-flop vanishing line.The observed prominent planar Hall effect and anisotropic magnetoresisitivity exhibit two-fold systematical angular dependent oscillations.These behaviors are attributed to the scattering from spin–orbital coupling instead of nontrivial topological origin.Our results reveal anisotropic interactions of magnetism and electron in V5S8,suggesting potential opportunities for the AF spintronic sensor and devices.展开更多
The development of precise and sensitive electrophysiological recording platforms holds the utmost importance for research in the fields of cardiology and neuroscience.In recent years,active micro/nano-bioelectronic d...The development of precise and sensitive electrophysiological recording platforms holds the utmost importance for research in the fields of cardiology and neuroscience.In recent years,active micro/nano-bioelectronic devices have undergone significant advancements,thereby facilitating the study of electrophysiology.The distinctive configuration and exceptional functionality of these active micro-nano-collaborative bioelectronic devices offer the potential for the recording of high-fidelity action potential signals on a large scale.In this paper,we review three-dimensional active nano-transistors and planar active micro-transistors in terms of their applications in electroexcitable cells,focusing on the evaluation of the effects of active micro/nano-bioelectronic devices on electrophysiological signals.Looking forward to the possibilities,challenges,and wide prospects of active micro-nano-devices,we expect to advance their progress to satisfy the demands of theoretical investigations and medical implementations within the domains of cardiology and neuroscience research.展开更多
Due to the importance of vibration effects on the functional accuracy of mechanical systems,this research aims to develop a precise model of a nonlinearly vibrating single-link mobile flexible manipulator.The manipula...Due to the importance of vibration effects on the functional accuracy of mechanical systems,this research aims to develop a precise model of a nonlinearly vibrating single-link mobile flexible manipulator.The manipulator consists of an elastic arm,a rotary motor,and a rigid carrier,and undergoes general in-plane rigid body motion along with elastic transverse deformation.To accurately model the elastic behavior,Timoshenko’s beam theory is used to describe the flexible arm,which accounts for rotary inertia and shear deformation effects.By applying Newton’s second law,the nonlinear governing equations of motion for the manipulator are derived as a coupled system of ordinary differential equations(ODEs)and partial differential equations(PDEs).Then,the assumed mode method(AMM)is used to solve this nonlinear system of governing equations with appropriate shape functions.The assumed modes can be obtained after solving the characteristic equation of a Timoshenko beam with clamped boundary conditions at one end and an attached mass/inertia at the other.In addition,the effect of the transverse vibration of the inextensible arm on its axial behavior is investigated.Despite the axial rigidity,the effect makes the rigid body dynamics invalid for the axial behavior of the arm.Finally,numerical simulations are conducted to evaluate the performance of the developed model,and the results are compared with those obtained by the finite element approach.The comparison confirms the validity of the proposed dynamic model for the system.According to the mentioned features,this model can be reliable for investigating the system’s vibrational behavior and implementing vibration control algorithms.展开更多
Converters rely on passive filtering as a crucial element due to the high-frequency operational characteristics of power electronics.Traditional filtering methods involve a dual inductor-capacitor(LC)cell or an induct...Converters rely on passive filtering as a crucial element due to the high-frequency operational characteristics of power electronics.Traditional filtering methods involve a dual inductor-capacitor(LC)cell or an inductor-capacitor-inductor(LCL)T-circuit.However,capacitors are susceptible to wear-out mechanisms and failure modes.Nevertheless,the necessity for monitoring and regular replacement adds to an elevated cost of ownership for such systems.The utilization of an active output power filter can be used to diminish the dimensions of the LC filter and the electrolytic dc-link capacitor,even though the inclusion of capacitors remains an indispensable part of the system.This paper introduces capacitorless solid-state power filter(SSPF)for single-phase dc-ac converters.The proposed configuration is capable of generating a sinusoidal ac voltage without relying on capacitors.The proposed filter,composed of a planar transformer and an H-bridge converter operating at high frequency,injects voltage harmonics to attain a sinusoidal output voltage.The design parameters of the planar transformer are incorporated,and the impact of magnetizing and leakage inductances on the operation of the SSPF is illustrated.Theoretical analysis,supported by simulation and experimental results,are provided for a design example for a single-phase system.The total harmonic distortion observed in the output voltage is well below the IEEE 519 standard.The system operation is experimentally tested under both steady-state and dynamic conditions.A comparison with existing technology is presented,demonstrating that the proposed topology reduces the passive components used for filtering.展开更多
Femtosecond laser direct inscription is a technique especially useful for prototyping purposes due to its distinctive advantages such as high fabrication accuracy,true 3D processing flexibility,and no need for mold or...Femtosecond laser direct inscription is a technique especially useful for prototyping purposes due to its distinctive advantages such as high fabrication accuracy,true 3D processing flexibility,and no need for mold or photomask.In this paper,we demonstrate the design and fabrication of a planar lightwave circuit(PLC)power splitter encoded with waveguide Bragg gratings(WBG)using a femtosecond laser inscription technique for passive optical network(PON)fault localization application.Both the reflected wavelengths and intervals of WBGs can be conveniently tuned.In the experiment,we succeeded in directly inscribing WBGs in 1×4 PLC splitter chips with a wavelength interval of about 4 nm and an adjustable reflectivity of up to 70% in the C-band.The proposed method is suitable for the prototyping of a PLC splitter encoded with WBG for PON fault localization applications.展开更多
Background: VANGL2 plays a variety of roles in various cellular processes, including tissue morphogenesis, asymmetric cell division, and nervous system development. There is currently a lack of systematic organization...Background: VANGL2 plays a variety of roles in various cellular processes, including tissue morphogenesis, asymmetric cell division, and nervous system development. There is currently a lack of systematic organization in the development and disease of the nervous system. Purpose: To explore the role of VANGL2 in the development of the nervous system and related diseases. Methods: Literature review and analysis of the role of VANGL2 in the development and disease of the nervous system. Results: VANGL2 defects lead to the development of the nervous system through the misconfiguration of various cells, which affects the development of the cochlea, the conduction of neural signals, and the development of nervous system-related diseases such as Alzheimer’s disease, GBM, Bohling-Opitz syndrome, and hydrocephalus. Conclusions: The VANGL2 gene is essential for nervous system development and its deficiency is linked to severe congenital conditions and various disorders, highlighting the need for more research on treatments for related gene defects.展开更多
The Total Coloring Conjecture (TCC) proposes that every simple graph G is (Δ + 2)-totally-colorable, where Δ is the maximum degree of G. For planar graph, TCC is open only in case Δ = 6. In this paper, we prove tha...The Total Coloring Conjecture (TCC) proposes that every simple graph G is (Δ + 2)-totally-colorable, where Δ is the maximum degree of G. For planar graph, TCC is open only in case Δ = 6. In this paper, we prove that TCC holds for planar graph with Δ = 6 and every 7-cycle contains at most two chords.展开更多
PolYimide passivation and planarization process techniques for high speed InP/InGaAs single heterojunction bipolar transistors (SHBTS) are developed. A maximum extrapolated ft of 210GHz is achieved for the SHBT with...PolYimide passivation and planarization process techniques for high speed InP/InGaAs single heterojunction bipolar transistors (SHBTS) are developed. A maximum extrapolated ft of 210GHz is achieved for the SHBT with 1.4μm × 15μm emitter area at VCE = 1. 1V and Ic = 33.5mA. This device is suitable for high speed and low power applications,such as ultra high speed mixed signal circuits and optoelectronic communication ICs.展开更多
基金supported by the National Key Research and Development Program of China(2022YFA1207600)the National Natural Science Foundation of China(62375272,62005294)。
文摘Two-photon photodynamic therapy(TP-PDT)has garnered significant attention because of its excellent depth of tissue penetration and high spatiotemporal selectivity.However,the limited targeting ability and oxygen dependency of photosensitizers(PSs)significantly hinder the effectiveness of photodynamic therapy in hypoxic tumor treatment.Herein,we designed and synthesized two lipid droplet(LD)-targeted two-photon PSs(TBPCP and TBCP)by reducing benzene rings to achieve“acceptor planarization”.Notably,acceptor planarization not only enhanced the intramolecular charge transfer but also transferred the photochemical reaction from typeⅡ(TBPCP)to typeⅠ(TBCP).Under the irradiation of 940 nm femtosecond pulsed laser,TBPCP and TBCP showed bright two-photon-excited fluorescence and excellent LD targeting in living cells.Comparing TBPCP(typeⅡPS),the outstanding TP-PDT efficacy of TBCP(typeⅠPS)under hypoxic conditions could be obtained in both cellular experiments and multicellular tumor spheroids(MCTS)model.Additionally,both TBPCP and TBCP could induce the lipid peroxidation in the typeⅠor typeⅡPDT due to the location of LD,depleting GSH and inactivating GPX4 to induce nonprogrammed ferroptosis in cells.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.21905163,91833304,21805289,91833306,21922511,61890940 and U2032112)the National Key R&D Program of China(Nos.2019YFA0705900 and 2017YFA0204701)+2 种基金F.L.is grateful for support from the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi(No.2019-07)Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(No.2019L0009)the Youth Science Foundation of Shanxi Province(No.201901D211149).
文摘Significant progress has been achieved for all-polymer solar cells(APSCs)in the last few years by the use of polymerized small molecular acceptors(PSMAs).Developing high electron mobility polymer acceptors has been considered a feasible solution to further improve the photovoltaic performance of APSCs and fabricate thick film devices,which contributed to roll-to-roll printing techniques.In this work,we designed and synthesized PSV,an A-DA’D-A small molecule acceptor-based PSMA with the vinyl group as a bridged linkage to reduce the steric hindrance between the 1,1-dicyanomethylene-3-indanone(IC)terminal group.In comparison with the C-C bond linked polymer acceptor PS,PSV exhibits an almost planar conjugated framework and well-ordered molecular stacking in the thin film.Moreover,PSV exhibits superior n-type semiconducting properties with high electron mobility of up to 0.54 cm^(2)·V^(−1)·s^(−1),which is the highest value among reported PSMAs.By utilizing PM6 as a polymer donor,PSV-based blend forms a favorable nanomorphology and exhibits high and well-balanced hole/electron mobilities,which is beneficial for exciton separation and charge transport.Consequently,APSCs based on PM6:PSV achieved high power conversion efficiencies of up to 15.73%,with a simultaneously realized high Voc of 0.923 V,Jsc of 23.2 mA·cm^(-2),and FF of 0.734.Such superior features enable PSV with excellent thickness-insensitive properties and over 13%PCE was obtained at 300 nm.To the best of our knowledge,the high PCE of 15.73%with excellent electron mobility of 0.54 cm^(2)·V^(−1)·s^(−1)is the highest values reported for APSCs.These results point to the great significance of developing polymer acceptors with a high electron mobility for boosting the performance of APSCs.
基金supported by the National Key Research and Development Program of China(Grant Nos.2023YFB2804700,2021YFA1202000 and 2021YFE0205800)National Natural Science Foundation of China(Grant Nos.12174292,62222507,and 62175101)+1 种基金Natural Science Foundation of Jiangsu Province(No.BK20212004)Fundamental Research Funds for the Central Universities(2042024kf1005).
文摘Conventional hyperspectral cameras cascade lenses and spectrometers to acquire the spectral datacube,which forms the fundamental framework for hyperspectral imaging.However,this cascading framework involves tradeoffs among spectral and imaging performances when the system is driven toward miniaturization.Here,we propose a spectral singlet lens that unifies optical imaging and computational spectrometry functions,enabling the creation of minimalist,miniaturized and high-performance hyperspectral cameras.As a paradigm,we capitalize on planar liquid crystal optics to implement the proposed framework,with each liquid-crystal unit cell acting as both phase modulator and electrically tunable spectral filter.Experiments with various targets show that the resulting millimeter-scale hyperspectral camera exhibits both high spectral fidelity(>95%)and high spatial resolutions(~1.7 times the diffraction limit).The proposed“two-in-one”framework can resolve the conflicts between spectral and imaging resolutions,which paves a practical pathway for advancing hyperspectral imaging systems toward miniaturization and portable applications.
基金the National Key Research and Development Program of China(Grant No.2022YFA1404104)the National Natural Science Foundation of China(Grant Nos.12025509 and 12104521)Fundamental Research Project of Shenzhen(Grant No.JCYJ20230808105009018).
文摘Magneto-optical traps (MOTs) composed of magnetic fields and light fields have been widely utilized to cool andconfine microscopic particles. Practical technology applications require miniaturized MOTs. The advancement of planaroptics has promoted the development of compact MOTs. In this article, we review the development of compact MOTs basedon planar optics. First, we introduce the standardMOTs. We then introduce the gratingMOTs with micron structures, whichhave been used to build cold atomic clocks, cold atomic interferometers, and ultra-cold sources. Further, we introducethe integrated MOTs based on nano-scale metasurfaces. These new compact MOTs greatly reduce volume and powerconsumption, and provide new opportunities for fundamental research and practical applications.
基金Project supported by the the Fundamental Research Funds for the Central Universities(Grant No.2023MS163).
文摘We study a generalized higher-order nonlinear Schr¨odinger equation in an optical fiber or a planar waveguide.We obtain the Lax pair and N-fold Darboux transformation(DT)with N being a positive integer.Based on Lax pair obtained by us,we derive the infinitely-many conservation laws.We give the bright one-,two-,and N-soliton solutions,and the first-,second-,and Nth-order breather solutions based on the N-fold DT.We conclude that the velocities of the bright solitons are influenced by the distributed gain function,g(z),and variable coefficients in equation,h1(z),p1(z),r1(z),and s1(z)via the asymptotic analysis,where z represents the propagation variable or spatial coordinate.We also graphically observe that:the velocities of the first-and second-order breathers will be affected by h1(z),p1(z),r1(z),and s1(z),and the background wave depends on g(z).
基金supported by the National Natural Science Foundation of China (Grant Nos.U19A2093,11904002,and 12074372)the Excellent Youth Project of Natural Science Foundation of Anhui Province (Grant No.2308085Y07)。
文摘We systematically investigate in-plane transport properties of ternary chalcogenideBi_(2)Rh_(3)Se_(2).Upon rotating the magnetic field within the plane of the sample, one can distinctly detect the presence of both planar Hall resistance and anisotropic longitudinal resistance, and the phenomena appeared are precisely described by the theoretical formulation of the planar Hall effect (PHE). In addition, anisotropic orbital magnetoresistance rather than topologically nontrivial chiral anomalies dominates the PHE in Bi_(2)Rh_(3)Se_(2). The finding not only provides another platform for understanding the mechanism of PHE, but could also be beneficial for future planar Hall sensors based on two-dimensional materials.
文摘This paper examines GaSb short-wavelength infrared detectors employing planar PN junctions. The fabrication was based on the Zn diffusion process and the diffusion temperature was optimized. Characterization revealed a 50% cut-off wavelength of 1.73 μm, a maximum detectivity of 8.73 × 10^(10) cm·Hz^(1/2)/W, and a minimum dark current density of 1.02 × 10^(-5) A/cm^(2).Additionally, a maximum quantum efficiency of 60.3% was achieved. Subsequent optimization of fabrication enabled the realization of a 320 × 256 focal plane array that exhibited satisfactory imaging results. Remarkably, the GaSb planar detectors demonstrated potential in low-cost short wavelength infrared imaging, without requiring material epitaxy or deposition.
基金financial support from Taishan Scholars Program(Grant No.2019KJG002)National Natural Science Foundation of China(Grant Nos.42272329 and 52279116).
文摘The damage of rock joints or fractures upon shear includes the surface damage occurring at the contact asperities and the damage beneath the shear surface within the host rock.The latter is commonly known as off-fault damage and has been much less investigated than the surface damage.The main contribution of this study is to compare the results of direct shear tests conducted on saw-cut planar joints and tension-induced rough granite joints under normal stresses ranging from 1 MPa to 50 MPa.The shear-induced off-fault damages are quantified and compared with the optical microscope observation.Our results clearly show that the planar joints slip stably under all the normal stresses except under 50 MPa,where some local fractures and regular stick-slip occur towards the end of the test.Both post-peak stress drop and stick-slip occur for all the rough joints.The residual shear strength envelopes for the rough joints and the peak shear strength envelope for the planar joints almost overlap.The root mean square(RMS)of asperity height for the rough joints decreases while it increases for the planar joint after shear,and a larger normal stress usually leads to a more significant decrease or increase in RMS.Besides,the extent of off-fault damage(or damage zone)increases with normal stress for both planar and rough joints,and it is restricted to a very thin layer with limited micro-cracks beneath the planar joint surface.In comparison,the thickness of the damage zone for the rough joints is about an order of magnitude larger than that of the planar joints,and the coalesced micro-cracks are generally inclined to the shear direction with acute angles.The findings obtained in this study contribute to a better understanding on the frictional behavior and damage characteristics of rock joints or fractures with different roughness.
基金the financial support by the National Natural Science Foundation of China (22371010, 21771017, and 51702009)the "Hundred Talents Program" of the Chinese Academy of Sciences, the Fundamental Research Funds for the Central Universities+1 种基金the Shenzhen Science and Technology Program (JCYJ20210324115412035, JCYJ2021-0324123202008, JCYJ20210 324122803009 and ZDSYS20210813095534001)the Guangdong Basic and Applied Basic Research Foundation (2021A1515110880)
文摘The use of redox-active organic electrode materials in energy storage is restricted due to their inferior solvent resistance,abysmal conductivity,and the resultant low practical capacity.To address these issues,a class of bipolar p-phenylenediimidazole-based small-molecule compounds are designed and fabricated.Theπ-conjugated backbone of these small molecules allows for electron delocalization on a big conjugation plane,endowing them with good conductivity and reaction reversibility.Furthermore,when the para-positions of phenylene are occupied by hydroxyl groups,as-formed intramolecular hydrogen bonds(N-H...O)between phenolic hydroxyl groups and the–NH groups of imidazole rings further enhance the structural planarity,resulting in higherπ-conjugation degree and better conductivity,and thus higher utilization of active sites and electrode capacity,proved by both experimental results and theoretical calculations.The optimized composite electrode DBNQ@rGO-45 shows a high specific capacity(∼308 mA h g^(−1)at 100 mA g^(−1))and a long cycling stability(112.9 mA h g^(−1)after 6000 cycles at 2000 mA g^(−1)).The significantly better electrochemical properties for hydroxyl group-containing compounds than those without hydroxyl groups attributed to intramolecular hydrogen bond-induced conjugation enhancement will inspire the structure design of organic electrodes for better energy storage.
基金funded by National Natural Science Foundation,China(Grant Nos.41972264 and 42207214)Zhejiang Provincial Natural Science Foundation,China(Grant No.LR22E080002).
文摘Planar sliding is one of the frequently observed types of failure in rock slopes.Kinematic analysis is a classic and widely used method to examine the potential failure modes in rock masses.The accuracy of planar sliding kinematic analysis is significantly influenced by the value assigned to the lateral limit angleγlim.However,the assignment ofγlim is currently used generally based on an empirical criterion.This study aims to propose an approach for determining the value ofγlim in deterministic and probabilistic kinematic planar sliding analysis.A new perspective is presented to reveal thatγlim essentially influences the probability of forming a potential planar sliding block.The procedure to calculate this probability is introduced using the block theory method.It is found that the probability is correlated with the number of discontinuity sets presented in rock masses.Thus,different values ofγlim for rock masses with different sets of discontinuities are recommended in both probabilistic and deterministic planar sliding kinematic analyses;whereas a fixed value ofγlim is commonly assigned to different types of rock masses in traditional method.Finally,an engineering case was used to compare the proposed and traditional kinematic analysis methods.The error rates of the traditional method vary from 45%to 119%,while that of the proposed method ranges between 1%and 17%.Therefore,it is likely that the proposed method is superior to the traditional one.
基金National Natural Science Foundation of China (Grant No.11872013) to provide fund for conducting experiments。
文摘The integration method of exploding foil initiator system(EFIs) used to be researched to broaden its application range in military and aerospace in the last few decades.In order to lower the firing voltage below 1 kV,an integrated EFIs with enhanced energy efficiency was designed.Corresponding exploding foil initiator chips were fabricated in batch via micro electromechanical systems technology by integrating a unified foil,a flyer layer and a barrel on a glass substrate successively,meanwhile its package of the whole system was proposed at a volume of 2.194 cm^(3).The structural parameters were determined by predicted performance including flyer velocity,impact behavior and conduction property via the proposed theoretical models and the static electric field simulation.As expect,this integrated EFIs exhibited excellent functions,which could accelerate the flyer to a terminal velocity over 4 km/s and preeminently initiate HNS-IV pellet at a circuit of 0.24 μF/0.9 kV.Furthermore,the theoretical design,fabrication and performance test have been all included to validate the feasibility of this integrated EFIs that was beneficial for its commercial development in the future.
基金financially supported by National Natural Science Foundation of China(Nos.12172379,12322211,and 11925207)。
文摘Mutual effects between a gliding arc(GA)discharge at atmospheric pressure and a premixed CH_(4)/air flame were experimentally investigated.Effects of the flame on the GA were studied using simultaneous measurements of the current,the voltage,and the instantaneous images of the plasma columns.The GA in the flame has a thicker and more diffusive plasma column,and it is more frequently ignited at a smaller breakdown voltage than that in the air.The GA extension velocity and the gliding velocity in the flame are larger than those in the air.The electrode voltage drop of the GA discharge in the flame is about 160 V,whereas that in the air is about 220 V.Compared with the GA in the air,the different features of the GA in the flame can be explained by high-temperature,weakly ionized,and species-abundant environment that are generated by the premixed CH_(4)/air flame.Effects of the gliding arc discharge on the premixed flames were demonstrated using planar laser-induced fluorescence of hydroxyl radicals(OH)and formaldehyde(CH_(2)O).OH and CH_(2)O can be formed in the CH_(4)/air mixture in the presence of the GA due to kinetic effects,and the increase of OH and CH_(2)O shows the great potential of the GA for combustion enhancement.
基金Project supported by the open research fund of Songshan Lake Materials Laboratory(Grant No.2021SLABFN11)the National Natural Science Foundation of China(Grant Nos.U2130101 and 92165204)+5 种基金Natural Science Foundation of Guangdong Province(Grant No.2022A1515010035)Guangzhou Basic and Applied Basic Research Foundation(Grant No.202201011798)the Open Project of Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices(Grant No.2022B1212010008)the Open Project of Key Laboratory of Optoelectronic Materials and Technologies(Grant No.OEMT-2023-ZTS-01)the National Key R&D Program of China(Grant Nos.2023YFF0718400 and 2023YFA1406500)(national)college students innovation and entrepreneurship training program,Sun Yat-sen University(Grant No.202310359).
文摘Systemically angular and planar transport investigations are performed in layered antiferromagnetic(AF)V_(5)S_(8).In this AF system,obvious anomalous Hall effect(AHE)is observed with a large Hall angle of 0.1 compared to that in ferromagnetic(FM)system.It can persist to the temperatures above AF transition and exhibit strong angular field dependence.The phase diagram reveals various magnetic states by rotating the applied field.By analyzing the anisotropic transport behavior,magnon contributions are revealed and exhibit obvious angular dependence with a spin-flop vanishing line.The observed prominent planar Hall effect and anisotropic magnetoresisitivity exhibit two-fold systematical angular dependent oscillations.These behaviors are attributed to the scattering from spin–orbital coupling instead of nontrivial topological origin.Our results reveal anisotropic interactions of magnetism and electron in V5S8,suggesting potential opportunities for the AF spintronic sensor and devices.
基金The work is supported in part by the National Natural Science Foundation of China(Grant Nos.62171483,82061148011)Zhejiang Provincial Natural Science Foundation of China(Grant No.LZ23F010004)+1 种基金Hangzhou Agricultural and Social Development Research Key Project(Grant No.20231203A08)Doctoral Initiation Program of the Tenth Affiliated Hospital,Southern Medical University(Grant No.K202308).
文摘The development of precise and sensitive electrophysiological recording platforms holds the utmost importance for research in the fields of cardiology and neuroscience.In recent years,active micro/nano-bioelectronic devices have undergone significant advancements,thereby facilitating the study of electrophysiology.The distinctive configuration and exceptional functionality of these active micro-nano-collaborative bioelectronic devices offer the potential for the recording of high-fidelity action potential signals on a large scale.In this paper,we review three-dimensional active nano-transistors and planar active micro-transistors in terms of their applications in electroexcitable cells,focusing on the evaluation of the effects of active micro/nano-bioelectronic devices on electrophysiological signals.Looking forward to the possibilities,challenges,and wide prospects of active micro-nano-devices,we expect to advance their progress to satisfy the demands of theoretical investigations and medical implementations within the domains of cardiology and neuroscience research.
文摘Due to the importance of vibration effects on the functional accuracy of mechanical systems,this research aims to develop a precise model of a nonlinearly vibrating single-link mobile flexible manipulator.The manipulator consists of an elastic arm,a rotary motor,and a rigid carrier,and undergoes general in-plane rigid body motion along with elastic transverse deformation.To accurately model the elastic behavior,Timoshenko’s beam theory is used to describe the flexible arm,which accounts for rotary inertia and shear deformation effects.By applying Newton’s second law,the nonlinear governing equations of motion for the manipulator are derived as a coupled system of ordinary differential equations(ODEs)and partial differential equations(PDEs).Then,the assumed mode method(AMM)is used to solve this nonlinear system of governing equations with appropriate shape functions.The assumed modes can be obtained after solving the characteristic equation of a Timoshenko beam with clamped boundary conditions at one end and an attached mass/inertia at the other.In addition,the effect of the transverse vibration of the inextensible arm on its axial behavior is investigated.Despite the axial rigidity,the effect makes the rigid body dynamics invalid for the axial behavior of the arm.Finally,numerical simulations are conducted to evaluate the performance of the developed model,and the results are compared with those obtained by the finite element approach.The comparison confirms the validity of the proposed dynamic model for the system.According to the mentioned features,this model can be reliable for investigating the system’s vibrational behavior and implementing vibration control algorithms.
文摘Converters rely on passive filtering as a crucial element due to the high-frequency operational characteristics of power electronics.Traditional filtering methods involve a dual inductor-capacitor(LC)cell or an inductor-capacitor-inductor(LCL)T-circuit.However,capacitors are susceptible to wear-out mechanisms and failure modes.Nevertheless,the necessity for monitoring and regular replacement adds to an elevated cost of ownership for such systems.The utilization of an active output power filter can be used to diminish the dimensions of the LC filter and the electrolytic dc-link capacitor,even though the inclusion of capacitors remains an indispensable part of the system.This paper introduces capacitorless solid-state power filter(SSPF)for single-phase dc-ac converters.The proposed configuration is capable of generating a sinusoidal ac voltage without relying on capacitors.The proposed filter,composed of a planar transformer and an H-bridge converter operating at high frequency,injects voltage harmonics to attain a sinusoidal output voltage.The design parameters of the planar transformer are incorporated,and the impact of magnetizing and leakage inductances on the operation of the SSPF is illustrated.Theoretical analysis,supported by simulation and experimental results,are provided for a design example for a single-phase system.The total harmonic distortion observed in the output voltage is well below the IEEE 519 standard.The system operation is experimentally tested under both steady-state and dynamic conditions.A comparison with existing technology is presented,demonstrating that the proposed topology reduces the passive components used for filtering.
基金supported by the ZTE Industry-University-Institute Fund Project under Grant No.IA20221202011。
文摘Femtosecond laser direct inscription is a technique especially useful for prototyping purposes due to its distinctive advantages such as high fabrication accuracy,true 3D processing flexibility,and no need for mold or photomask.In this paper,we demonstrate the design and fabrication of a planar lightwave circuit(PLC)power splitter encoded with waveguide Bragg gratings(WBG)using a femtosecond laser inscription technique for passive optical network(PON)fault localization application.Both the reflected wavelengths and intervals of WBGs can be conveniently tuned.In the experiment,we succeeded in directly inscribing WBGs in 1×4 PLC splitter chips with a wavelength interval of about 4 nm and an adjustable reflectivity of up to 70% in the C-band.The proposed method is suitable for the prototyping of a PLC splitter encoded with WBG for PON fault localization applications.
文摘Background: VANGL2 plays a variety of roles in various cellular processes, including tissue morphogenesis, asymmetric cell division, and nervous system development. There is currently a lack of systematic organization in the development and disease of the nervous system. Purpose: To explore the role of VANGL2 in the development of the nervous system and related diseases. Methods: Literature review and analysis of the role of VANGL2 in the development and disease of the nervous system. Results: VANGL2 defects lead to the development of the nervous system through the misconfiguration of various cells, which affects the development of the cochlea, the conduction of neural signals, and the development of nervous system-related diseases such as Alzheimer’s disease, GBM, Bohling-Opitz syndrome, and hydrocephalus. Conclusions: The VANGL2 gene is essential for nervous system development and its deficiency is linked to severe congenital conditions and various disorders, highlighting the need for more research on treatments for related gene defects.
文摘The Total Coloring Conjecture (TCC) proposes that every simple graph G is (Δ + 2)-totally-colorable, where Δ is the maximum degree of G. For planar graph, TCC is open only in case Δ = 6. In this paper, we prove that TCC holds for planar graph with Δ = 6 and every 7-cycle contains at most two chords.
文摘PolYimide passivation and planarization process techniques for high speed InP/InGaAs single heterojunction bipolar transistors (SHBTS) are developed. A maximum extrapolated ft of 210GHz is achieved for the SHBT with 1.4μm × 15μm emitter area at VCE = 1. 1V and Ic = 33.5mA. This device is suitable for high speed and low power applications,such as ultra high speed mixed signal circuits and optoelectronic communication ICs.