In the semi-free acoustic field, the actual acoustic pressure at any point is composed of two parts: The direct acoustic pressure and the reflected acoustic pressure. The general acoustic holographic theories and alg...In the semi-free acoustic field, the actual acoustic pressure at any point is composed of two parts: The direct acoustic pressure and the reflected acoustic pressure. The general acoustic holographic theories and algorithms request that there is only the direct acoustic pressure contained in the pressure at any point on the hologram surface, consequently, they cannot be used to reconstruct acoustic source and predict acoustic field directly. To take the reflected pressure into consideration, near-field acoustic holography for semi-free acoustic field based on wave superposition approach is proposed to realize the holographic reconstruction and prediction of the semi-free acoustic field, and the wave superposition approach is adopted as a holographic transform algorithm. The proposed theory and algorithm are realized and verified with a numerical example, and the drawbacks of the general theories and algorithms in the holographic reconstruction and prediction of the semi-free acoustic field are also demonstrated by this numerical example.展开更多
Because of the ill-posedness of the near-field acoustic holography(NAH),the regularization method is required to stabilize the computational process of NAH.The regularization effect is related to how to select the p...Because of the ill-posedness of the near-field acoustic holography(NAH),the regularization method is required to stabilize the computational process of NAH.The regularization effect is related to how to select the parameter correctly and effectively.However the L-curve method commonly used for the selection of regularization parameters has the disadvantages of wrong selection and incorrect selection,which influences the application of NAH.For the purpose of solving the problems existed in the L-curve method,the (?)-curve method is introduced into the field of NAH,and the performance applied to NAH directly is analyzed on the basis of equivalent source method-based NAH.However,it is found out via investigations that the(?)-curve method in NAH also has the problem of wrong selection and is unable to choose the regularization parameter correctly.In order to select the parameter correctly and effectively,a novel method for selecting regularization parameters is proposed based on the original(?)-curve method,which can be called improved (?)-curve method.In the proposed method the regularization parameters are discretized linearly between the largest singular value and the smallest singular value,and the solution norm and the residual norm corresponding to these regularization parameters are also described in a linear coordinate instead of in a lg-lg coordinate,which are the two main differences compared with the L-curve and with the original(?)-curve method.In linear coordinate and using the linearly discretized regularization parameters,the solution norm is a monotonically decreasing function of the residual norm as the increase of the regularization parameter,moreover the curve is convex everywhere.So the regularization parameters can be selected correctly and effectively based on the improved(?)-curve method.Then a numerical simulation is done with a simply supported plate to verify the validity of the proposed method.Experiments with two actual sources,a clamped plate and the double speakers,are carried out to do a further demonstration.The simulation result as well as the experimental result shows that the improved(?)-curve method is efficacious and has some advantages over the L-curve method and the original(?)-curve method.The proposed novel method is able to avoid the problem of wrong selection and to select the regularization parameter correctly even if the curve is smooth.展开更多
Noise reduction program design is an effective approach that relies on efficient noise prediction for reducing ground noise during flight.The existing noise prediction methods have the limitations of being computation...Noise reduction program design is an effective approach that relies on efficient noise prediction for reducing ground noise during flight.The existing noise prediction methods have the limitations of being computationally expensive or only applicable to far-fields.In this paper,a High-Efficiency Prediction Method(HEPM)for helicopter global/ground noise based on near-field acoustic holography is proposed.The HEPM can predict the global noise based on acoustic modal analysis and has the advantages of high prediction accuracy and low time cost.The process is given as follows:firstly,the rotor noise on the holographic surface in the specified flight is obtained by simulations or experiments.Secondly,the global noise model,which maps time-domain noise to acoustic modes,is established based on near-field acoustic holography and Fourier acoustic analysis methods.Finally,combined with acoustic modal amplitude,the model established enables efficiently predicting the global/ground noise in the corresponding flight state.To verify the accuracy of the prediction method,a simulation study is conducted in hovering and forward flight states using a model helicopter with a 2-meter rotor and Rotor Body Interaction(ROBIN)fuselage.The comparison of HEPM with numerical results shows that the average prediction errors of the global and ground noise are less than 0.3 dB and 0.2 dB,respectively.For a region containing 100000 observers,the computation time of the HEPM is only one-fifth of that of the acoustic hemisphere method,demonstrating the rapidity of the proposed method.展开更多
Hybrid near-field acoustical holography(NAH) is developed for reconstructing acoustic radiation from a cylindrical source in a complex underwater environment. In hybrid NAH,we combine statistically optimized near-fiel...Hybrid near-field acoustical holography(NAH) is developed for reconstructing acoustic radiation from a cylindrical source in a complex underwater environment. In hybrid NAH,we combine statistically optimized near-field acoustical holography(SONAH) and broadband acoustical holography from intensity measurements(BAHIM) to reconstruct the underwater cylindrical source field. First,the BAHIM is utilized to regenerate as much acoustic pressures on the hologram surface as necessary,and then the acoustic pressures are taken as input to the formulation implemented numerically by SONAH. The main advantages of this technology are that the complex pressure on the hologram surface can be reconstructed without reference signal,and the measurement array can be smaller than the source,thus the practicability and efficiency of this technology are greatly enhanced. Numerical examples of a cylindrical source are demonstrated. Test results show that hybrid NAH can yield a more accurate reconstruction than conventional NAH. Then,an experiment has been carried out with a vector hydrophone array. The experimental results show the advantage of hybrid NAH in the reconstruction of an acoustic field and the feasibility of using a vector hydrophone array in an underwater NAH measurement,as well as the identification and localization of noise sources.展开更多
Near-field acoustical holography (NAH) is a powerful tool for identifying noise sources and visualizing acoustic field. By recording the acoustic pressures in the near-field, the acoustic quantities in the whole 3-D f...Near-field acoustical holography (NAH) is a powerful tool for identifying noise sources and visualizing acoustic field. By recording the acoustic pressures in the near-field, the acoustic quantities in the whole 3-D field can be reconstructed and predicted. However, the current theory of NAH is not applicable to tracking large scale moving noise sources. Therefore, the hybrid near-field acoustical holography is developed for reconstructing acoustic radiation, which is derived from statistically optimized near-field acoustical holography (SONAH) and moving frame acoustical holography (MFAH). The theoretical formulation is systematically addressed. This method enables us to visualize the noise generated by moving noise sources and the measurement array can be smaller than the source, which improves the practicability and efficiency of this technology. Numerical simulations are presented to demonstrate the advantages of hybrid NAH. Then, two experiments have been carried out with a line array of hydrophones. The results of simulations and experiments support the proposed theory, which shows the advantage of hybrid NAH in the reconstruction of an acoustic field in an underwater holographic measurement.展开更多
One-step patch near-field acoustical holography(PNAH) is a powerful tool for identifying noise sources from the partially known sound pressure field.The acoustical property to be reconstructed on the surface of intere...One-step patch near-field acoustical holography(PNAH) is a powerful tool for identifying noise sources from the partially known sound pressure field.The acoustical property to be reconstructed on the surface of interest is related to the partially measured pressure on the hologram surface in terms of sampling and bandlimiting matrices,which cost more in computation.A one-step procedure based on measuring of the normal component of the particle velocity is described,including the mathematical formulation.The numerical simulation shows that one-step PNAH based on particle velocity can obtain more accurately reconstructed results and it is also less sensitive to noise than the method based on pressure.These findings are confirmed by an underwater near-field acoustical holography experiment conducted with a vector hydrophone array.The experimental results have illustrated the high performance of one-step PNAH based on particle velocity in the reconstruction of sound field and the advantages of a vector hydrophone array in an underwater near-field measurement.展开更多
基金This project is supported by National Natural Science Foundation of China (No.10504006, No.50575063).
文摘In the semi-free acoustic field, the actual acoustic pressure at any point is composed of two parts: The direct acoustic pressure and the reflected acoustic pressure. The general acoustic holographic theories and algorithms request that there is only the direct acoustic pressure contained in the pressure at any point on the hologram surface, consequently, they cannot be used to reconstruct acoustic source and predict acoustic field directly. To take the reflected pressure into consideration, near-field acoustic holography for semi-free acoustic field based on wave superposition approach is proposed to realize the holographic reconstruction and prediction of the semi-free acoustic field, and the wave superposition approach is adopted as a holographic transform algorithm. The proposed theory and algorithm are realized and verified with a numerical example, and the drawbacks of the general theories and algorithms in the holographic reconstruction and prediction of the semi-free acoustic field are also demonstrated by this numerical example.
基金supported by National Natural Science Foundation of China(Grant No.11004045,No.10974040)Fok Ying Tung Education Foundation of China(Grant No.111058)Program for New Century Excellent Talents in University of China(Grant No.NCET-08-0767)
文摘Because of the ill-posedness of the near-field acoustic holography(NAH),the regularization method is required to stabilize the computational process of NAH.The regularization effect is related to how to select the parameter correctly and effectively.However the L-curve method commonly used for the selection of regularization parameters has the disadvantages of wrong selection and incorrect selection,which influences the application of NAH.For the purpose of solving the problems existed in the L-curve method,the (?)-curve method is introduced into the field of NAH,and the performance applied to NAH directly is analyzed on the basis of equivalent source method-based NAH.However,it is found out via investigations that the(?)-curve method in NAH also has the problem of wrong selection and is unable to choose the regularization parameter correctly.In order to select the parameter correctly and effectively,a novel method for selecting regularization parameters is proposed based on the original(?)-curve method,which can be called improved (?)-curve method.In the proposed method the regularization parameters are discretized linearly between the largest singular value and the smallest singular value,and the solution norm and the residual norm corresponding to these regularization parameters are also described in a linear coordinate instead of in a lg-lg coordinate,which are the two main differences compared with the L-curve and with the original(?)-curve method.In linear coordinate and using the linearly discretized regularization parameters,the solution norm is a monotonically decreasing function of the residual norm as the increase of the regularization parameter,moreover the curve is convex everywhere.So the regularization parameters can be selected correctly and effectively based on the improved(?)-curve method.Then a numerical simulation is done with a simply supported plate to verify the validity of the proposed method.Experiments with two actual sources,a clamped plate and the double speakers,are carried out to do a further demonstration.The simulation result as well as the experimental result shows that the improved(?)-curve method is efficacious and has some advantages over the L-curve method and the original(?)-curve method.The proposed novel method is able to avoid the problem of wrong selection and to select the regularization parameter correctly even if the curve is smooth.
基金supported by the National Key Research and Development Program of China(No.2021YFB3400100).
文摘Noise reduction program design is an effective approach that relies on efficient noise prediction for reducing ground noise during flight.The existing noise prediction methods have the limitations of being computationally expensive or only applicable to far-fields.In this paper,a High-Efficiency Prediction Method(HEPM)for helicopter global/ground noise based on near-field acoustic holography is proposed.The HEPM can predict the global noise based on acoustic modal analysis and has the advantages of high prediction accuracy and low time cost.The process is given as follows:firstly,the rotor noise on the holographic surface in the specified flight is obtained by simulations or experiments.Secondly,the global noise model,which maps time-domain noise to acoustic modes,is established based on near-field acoustic holography and Fourier acoustic analysis methods.Finally,combined with acoustic modal amplitude,the model established enables efficiently predicting the global/ground noise in the corresponding flight state.To verify the accuracy of the prediction method,a simulation study is conducted in hovering and forward flight states using a model helicopter with a 2-meter rotor and Rotor Body Interaction(ROBIN)fuselage.The comparison of HEPM with numerical results shows that the average prediction errors of the global and ground noise are less than 0.3 dB and 0.2 dB,respectively.For a region containing 100000 observers,the computation time of the HEPM is only one-fifth of that of the acoustic hemisphere method,demonstrating the rapidity of the proposed method.
基金was supported by the National Natural Science Foundation of China (Grant No. 51310080202)
文摘Hybrid near-field acoustical holography(NAH) is developed for reconstructing acoustic radiation from a cylindrical source in a complex underwater environment. In hybrid NAH,we combine statistically optimized near-field acoustical holography(SONAH) and broadband acoustical holography from intensity measurements(BAHIM) to reconstruct the underwater cylindrical source field. First,the BAHIM is utilized to regenerate as much acoustic pressures on the hologram surface as necessary,and then the acoustic pressures are taken as input to the formulation implemented numerically by SONAH. The main advantages of this technology are that the complex pressure on the hologram surface can be reconstructed without reference signal,and the measurement array can be smaller than the source,thus the practicability and efficiency of this technology are greatly enhanced. Numerical examples of a cylindrical source are demonstrated. Test results show that hybrid NAH can yield a more accurate reconstruction than conventional NAH. Then,an experiment has been carried out with a vector hydrophone array. The experimental results show the advantage of hybrid NAH in the reconstruction of an acoustic field and the feasibility of using a vector hydrophone array in an underwater NAH measurement,as well as the identification and localization of noise sources.
基金supported by the Fundamental Research Funds For the Central Universities (Grant No. HEUCFR1013)
文摘Near-field acoustical holography (NAH) is a powerful tool for identifying noise sources and visualizing acoustic field. By recording the acoustic pressures in the near-field, the acoustic quantities in the whole 3-D field can be reconstructed and predicted. However, the current theory of NAH is not applicable to tracking large scale moving noise sources. Therefore, the hybrid near-field acoustical holography is developed for reconstructing acoustic radiation, which is derived from statistically optimized near-field acoustical holography (SONAH) and moving frame acoustical holography (MFAH). The theoretical formulation is systematically addressed. This method enables us to visualize the noise generated by moving noise sources and the measurement array can be smaller than the source, which improves the practicability and efficiency of this technology. Numerical simulations are presented to demonstrate the advantages of hybrid NAH. Then, two experiments have been carried out with a line array of hydrophones. The results of simulations and experiments support the proposed theory, which shows the advantage of hybrid NAH in the reconstruction of an acoustic field in an underwater holographic measurement.
基金supported by the National Natural Science Foundation of China(Grant No.11204049)the National Defence Research Funds (Grant No.7131107 and 51310040202)the Fundamental Research Funds For the Central Universities(Grant No.HEUCFR1013 and HEUCF120504)
文摘One-step patch near-field acoustical holography(PNAH) is a powerful tool for identifying noise sources from the partially known sound pressure field.The acoustical property to be reconstructed on the surface of interest is related to the partially measured pressure on the hologram surface in terms of sampling and bandlimiting matrices,which cost more in computation.A one-step procedure based on measuring of the normal component of the particle velocity is described,including the mathematical formulation.The numerical simulation shows that one-step PNAH based on particle velocity can obtain more accurately reconstructed results and it is also less sensitive to noise than the method based on pressure.These findings are confirmed by an underwater near-field acoustical holography experiment conducted with a vector hydrophone array.The experimental results have illustrated the high performance of one-step PNAH based on particle velocity in the reconstruction of sound field and the advantages of a vector hydrophone array in an underwater near-field measurement.