X80 pipeline steel was welded with submerged arc automatic welding, the microstructures, cavity sizes, fusion depths and plane scanning of chemical elements in the welded zone, fusion zone, heat affected zone and base...X80 pipeline steel was welded with submerged arc automatic welding, the microstructures, cavity sizes, fusion depths and plane scanning of chemical elements in the welded zone, fusion zone, heat affected zone and base steel were observed with OM(optical microscope) and SEM(scanning electron microscope), respectively. The experimental results show that there is main acicular ferrite in the base steel and welded zone, the microscopic structure of fusion zone is a blocked bainite, and the heat affected zone is composed of multilateral ferrite and pearlite. M-A unit of the welded zone is the main factor to strengthen the welded zone, composed of acicular ferrites. The percentage of cavities in the welded joint is less than that in the base steel, which is beneficial to increasing its mechanical performance and corrosion resistance. The fusion depth in the fusion zone and welded zone is 101.13 μm and 115.85 μm, respectively, and the distribution of chemical elements in the welded zone is uniform, no enrichment phenomena.展开更多
采用阴极弧离子镀法在H13钢表面制备Ti Al Si N涂层,通过SEM对Ti Al Si N涂层表面和界面形貌进行了观察,通过EDS和XRD对其化学元素和物相进行了分析,利用划痕法测定了其结合强度,并对其界面结合机理进行了探讨。结果表明:Ti Al Si N涂...采用阴极弧离子镀法在H13钢表面制备Ti Al Si N涂层,通过SEM对Ti Al Si N涂层表面和界面形貌进行了观察,通过EDS和XRD对其化学元素和物相进行了分析,利用划痕法测定了其结合强度,并对其界面结合机理进行了探讨。结果表明:Ti Al Si N涂层表面主要成分为Ti、Al、Si和N元素,各元素分布均匀,未产生富集现象;高硬度的Ti Al N是由Al原子以置换方式取代Ti N中部分Ti原子生成的,且Ti N和Al N晶粒得到细化,形成较为致密的结构,使涂层硬度得到了提高;Ti、Al、Si、N等原子在结合界面处发生相互扩散,是形成冶金结合的主要机制;Ti Al SN涂层/H13钢体系具有较好的结合强度,用划痕法测得涂层界面结合强度为44 N。展开更多
基金Funded by the Chief Expert (Engineer) Project of Jiangsu Provincial Association for Science(No.2013-216)the Innovation Program of Graduated Student of Jiangsu Province(CXLX2014-1098)
文摘X80 pipeline steel was welded with submerged arc automatic welding, the microstructures, cavity sizes, fusion depths and plane scanning of chemical elements in the welded zone, fusion zone, heat affected zone and base steel were observed with OM(optical microscope) and SEM(scanning electron microscope), respectively. The experimental results show that there is main acicular ferrite in the base steel and welded zone, the microscopic structure of fusion zone is a blocked bainite, and the heat affected zone is composed of multilateral ferrite and pearlite. M-A unit of the welded zone is the main factor to strengthen the welded zone, composed of acicular ferrites. The percentage of cavities in the welded joint is less than that in the base steel, which is beneficial to increasing its mechanical performance and corrosion resistance. The fusion depth in the fusion zone and welded zone is 101.13 μm and 115.85 μm, respectively, and the distribution of chemical elements in the welded zone is uniform, no enrichment phenomena.
文摘采用阴极弧离子镀法在H13钢表面制备Ti Al Si N涂层,通过SEM对Ti Al Si N涂层表面和界面形貌进行了观察,通过EDS和XRD对其化学元素和物相进行了分析,利用划痕法测定了其结合强度,并对其界面结合机理进行了探讨。结果表明:Ti Al Si N涂层表面主要成分为Ti、Al、Si和N元素,各元素分布均匀,未产生富集现象;高硬度的Ti Al N是由Al原子以置换方式取代Ti N中部分Ti原子生成的,且Ti N和Al N晶粒得到细化,形成较为致密的结构,使涂层硬度得到了提高;Ti、Al、Si、N等原子在结合界面处发生相互扩散,是形成冶金结合的主要机制;Ti Al SN涂层/H13钢体系具有较好的结合强度,用划痕法测得涂层界面结合强度为44 N。