期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于Plane-Gaussian神经网络的网络流状态监测
1
作者
杨绪兵
冯哲
+1 位作者
顾一凡
薛晖
《计算机应用》
CSCD
北大核心
2017年第3期782-785,816,共5页
针对复杂网络环境下网络流监测(分类)问题,为实现多个类别直接分类以及提高学习方法的训练速度,提出了一种随机的人工神经网络学习方法。该方法借鉴平面高斯(PG)神经网络模型,引入随机投影思想,通过计算矩阵伪逆的方法解析获得网络连接...
针对复杂网络环境下网络流监测(分类)问题,为实现多个类别直接分类以及提高学习方法的训练速度,提出了一种随机的人工神经网络学习方法。该方法借鉴平面高斯(PG)神经网络模型,引入随机投影思想,通过计算矩阵伪逆的方法解析获得网络连接矩阵,理论上可证明该网络具有全局逼近能力。在人工数据和标准网络流监测数据上进行了实验仿真,与同样采用随机方法的极限学习机(ELM)和PG网络相比,分析与实验结果表明:1)由于继承了PG网络的几何特性,对平面型分布数据更为有效;2)采用了随机方法,训练速度与ELM相当,但比PG网络快得多;3)三种方法中,该方法更有利于解决网络流监测问题。
展开更多
关键词
plane-gaussian
人工神经网络
极限学习机
随机投影
全局逼近
分类精度
下载PDF
职称材料
题名
基于Plane-Gaussian神经网络的网络流状态监测
1
作者
杨绪兵
冯哲
顾一凡
薛晖
机构
南京林业大学信息科学技术学院
东南大学计算机科学与工程学院
出处
《计算机应用》
CSCD
北大核心
2017年第3期782-785,816,共5页
基金
国家自然科学基金资助项目(61375057)
江苏高校品牌专业建设工程资助项目~~
文摘
针对复杂网络环境下网络流监测(分类)问题,为实现多个类别直接分类以及提高学习方法的训练速度,提出了一种随机的人工神经网络学习方法。该方法借鉴平面高斯(PG)神经网络模型,引入随机投影思想,通过计算矩阵伪逆的方法解析获得网络连接矩阵,理论上可证明该网络具有全局逼近能力。在人工数据和标准网络流监测数据上进行了实验仿真,与同样采用随机方法的极限学习机(ELM)和PG网络相比,分析与实验结果表明:1)由于继承了PG网络的几何特性,对平面型分布数据更为有效;2)采用了随机方法,训练速度与ELM相当,但比PG网络快得多;3)三种方法中,该方法更有利于解决网络流监测问题。
关键词
plane-gaussian
人工神经网络
极限学习机
随机投影
全局逼近
分类精度
Keywords
plane-gaussian (pg) artificial neural network
Extreme Learning Machine (ELM)
random projection
global approximation
recognition accuracy
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于Plane-Gaussian神经网络的网络流状态监测
杨绪兵
冯哲
顾一凡
薛晖
《计算机应用》
CSCD
北大核心
2017
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部