To date,several molecules have been found to facilitate iron influx,while the types of iron influx channels remain to be elucidated.Here,Piezo1 channel was identified as a key iron transporter in response to mechanica...To date,several molecules have been found to facilitate iron influx,while the types of iron influx channels remain to be elucidated.Here,Piezo1 channel was identified as a key iron transporter in response to mechanical stress.Piezo1-mediated iron overload disturbed iron metabolism and exaggerated ferroptosis in nucleus pulposus cells(NPCs).Importantly,Piezo1-induced iron influx was independent of the transferrin receptor(TFRC),a well-recognized iron gatekeeper.Furthermore,pharmacological inactivation of Piezo1 profoundly reduced iron accumulation,alleviated mitochondrial ROS,and suppressed ferroptotic alterations in stimulation of mechanical stress.Moreover,conditional knockout of Piezo1(Col2a1-CreERT Piezo1^(flox/flox))attenuated the mechanical injury-induced intervertebral disc degeneration(IVDD).Notably,the protective effect of Piezo1 deficiency in IVDD was dampened in Piezo1/Gpx4 conditional double knockout(cDKO)mice(Col2a1-CreERT Piezo1^(flox/flox)/Gpx4^(flox/flox)).These findings suggest that Piezo1 is a potential determinant of iron influx,indicating that the Piezo1-iron-ferroptosis axis might shed light on the treatment of mechanical stress-induced diseases.展开更多
The concentration difference in the near-surface region of lithium metal is the main cause of lithium dendrite growth.Resolving this issue will be key to achieving high-performance lithium metal batteries(LMBs).Herein...The concentration difference in the near-surface region of lithium metal is the main cause of lithium dendrite growth.Resolving this issue will be key to achieving high-performance lithium metal batteries(LMBs).Herein,we construct a lithium nitrate(LiNO_(3))-implanted electroactiveβphase polyvinylidene fluoride-co-hexafluoropropylene(PVDF-HFP)crystalline polymorph layer(PHL).The electronegatively charged polymer chains attain lithium ions on the surface to form lithium-ion charged channels.These channels act as reservoirs to sustainably release Li ions to recompense the ionic flux of electrolytes,decreasing the growth of lithium dendrites.The stretched molecular channels can also accelerate the transport of Li ions.The combined effects enable a high Coulombic efficiency of 97.0%for 250 cycles in lithium(Li)||copper(Cu)cell and a stable symmetric plating/stripping behavior over 2000 h at 3 mA cm^(-2)with ultrahigh Li utilization of 50%.Furthermore,the full cell coupled with PHL-Cu@Li anode and Li Fe PO_(4) cathode exhibits long-term cycle stability with high-capacity retention of 95.9%after 900 cycles.Impressively,the full cell paired with LiNi_(0.87)Co_(0.1)Mn_(0.03)O_(2)maintains a discharge capacity of 170.0 mAh g^(-1)with a capacity retention of 84.3%after 100 cycles even under harsh condition of ultralow N/P ratio of 0.83.This facile strategy will widen the potential application of LiNO_(3)in ester-based electrolyte for practical high-voltage LMBs.展开更多
The great potentials of massive Multiple-Input Multiple-Output(MIMO)in Frequency Division Duplex(FDD)mode can be fully exploited when the downlink Channel State Information(CSI)is available at base stations.However,th...The great potentials of massive Multiple-Input Multiple-Output(MIMO)in Frequency Division Duplex(FDD)mode can be fully exploited when the downlink Channel State Information(CSI)is available at base stations.However,the accurate CsI is difficult to obtain due to the large amount of feedback overhead caused by massive antennas.In this paper,we propose a deep learning based joint channel estimation and feedback framework,which comprehensively realizes the estimation,compression,and reconstruction of downlink channels in FDD massive MIMO systems.Two networks are constructed to perform estimation and feedback explicitly and implicitly.The explicit network adopts a multi-Signal-to-Noise-Ratios(SNRs)technique to obtain a single trained channel estimation subnet that works well with different SNRs and employs a deep residual network to reconstruct the channels,while the implicit network directly compresses pilots and sends them back to reduce network parameters.Quantization module is also designed to generate data-bearing bitstreams.Simulation results show that the two proposed networks exhibit excellent performance of reconstruction and are robust to different environments and quantization errors.展开更多
Low Earth Orbit(LEO)multibeam satellites will be widely used in the next generation of satellite communication systems,whose inter-beam interference will inevitably limit the performance of the whole system.Nonlinear ...Low Earth Orbit(LEO)multibeam satellites will be widely used in the next generation of satellite communication systems,whose inter-beam interference will inevitably limit the performance of the whole system.Nonlinear precoding such as Tomlinson-Harashima precoding(THP)algorithm has been proved to be a promising technology to solve this problem,which has smaller noise amplification effect compared with linear precoding.However,the similarity of different user channels(defined as channel correlation)will degrade the performance of THP algorithm.In this paper,we qualitatively analyze the inter-beam interference in the whole process of LEO satellite over a specific coverage area,and the impact of channel correlation on Signal-to-Noise Ratio(SNR)of receivers when THP is applied.One user grouping algorithm is proposed based on the analysis of channel correlation,which could decrease the number of users with high channel correlation in each precoding group,thus improve the performance of THP.Furthermore,our algorithm is designed under the premise of co-frequency deployment and orthogonal frequency division multiplexing(OFDM),which leads to more users under severe inter-beam interference compared to the existing research on geostationary orbit satellites broadcasting systems.Simulation results show that the proposed user grouping algorithm possesses higher channel capacity and better bit error rate(BER)performance in high SNR conditions relative to existing works.展开更多
Identification of the ice channel is the basic technology for developing intelligent ships in ice-covered waters,which is important to ensure the safety and economy of navigation.In the Arctic,merchant ships with low ...Identification of the ice channel is the basic technology for developing intelligent ships in ice-covered waters,which is important to ensure the safety and economy of navigation.In the Arctic,merchant ships with low ice class often navigate in channels opened up by icebreakers.Navigation in the ice channel often depends on good maneuverability skills and abundant experience from the captain to a large extent.The ship may get stuck if steered into ice fields off the channel.Under this circumstance,it is very important to study how to identify the boundary lines of ice channels with a reliable method.In this paper,a two-staged ice channel identification method is developed based on image segmentation and corner point regression.The first stage employs the image segmentation method to extract channel regions.In the second stage,an intelligent corner regression network is proposed to extract the channel boundary lines from the channel region.A non-intelligent angle-based filtering and clustering method is proposed and compared with corner point regression network.The training and evaluation of the segmentation method and corner regression network are carried out on the synthetic and real ice channel dataset.The evaluation results show that the accuracy of the method using the corner point regression network in the second stage is achieved as high as 73.33%on the synthetic ice channel dataset and 70.66%on the real ice channel dataset,and the processing speed can reach up to 14.58frames per second.展开更多
The influence of variable viscosity and double diffusion on the convective stability of a nanofluid flow in an inclined porous channel is investigated.The DarcyBrinkman model is used to characterize the fluid flow dyn...The influence of variable viscosity and double diffusion on the convective stability of a nanofluid flow in an inclined porous channel is investigated.The DarcyBrinkman model is used to characterize the fluid flow dynamics in porous materials.The analytical solutions are obtained for the unidirectional and completely developed flow.Based on a normal mode analysis,the generalized eigenvalue problem under a perturbed state is solved.The eigenvalue problem is then solved by the spectral method.Finally,the critical Rayleigh number with the corresponding wavenumber is evaluated at the assigned values of the other flow-governing parameters.The results show that increasing the Darcy number,the Lewis number,the Dufour parameter,or the Soret parameter increases the stability of the system,whereas increasing the inclination angle of the channel destabilizes the flow.Besides,the flow is the most unstable when the channel is vertically oriented.展开更多
Due to the interdependency of frame synchronization(FS)and channel estimation(CE),joint FS and CE(JFSCE)schemes are proposed to enhance their functionalities and therefore boost the overall performance of wireless com...Due to the interdependency of frame synchronization(FS)and channel estimation(CE),joint FS and CE(JFSCE)schemes are proposed to enhance their functionalities and therefore boost the overall performance of wireless communication systems.Although traditional JFSCE schemes alleviate the influence between FS and CE,they show deficiencies in dealing with hardware imperfection(HI)and deterministic line-of-sight(LOS)path.To tackle this challenge,we proposed a cascaded ELM-based JFSCE to alleviate the influence of HI in the scenario of the Rician fading channel.Specifically,the conventional JFSCE method is first employed to extract the initial features,and thus forms the non-Neural Network(NN)solutions for FS and CE,respectively.Then,the ELMbased networks,named FS-NET and CE-NET,are cascaded to capture the NN solutions of FS and CE.Simulation and analysis results show that,compared with the conventional JFSCE methods,the proposed cascaded ELM-based JFSCE significantly reduces the error probability of FS and the normalized mean square error(NMSE)of CE,even against the impacts of parameter variations.展开更多
Transient receptor potential(TRP)channels are strongly associated with colon cancer development and progression.This study leveraged a multivariate Cox regression model on publicly available datasets to construct a TR...Transient receptor potential(TRP)channels are strongly associated with colon cancer development and progression.This study leveraged a multivariate Cox regression model on publicly available datasets to construct a TRP channels-associated gene signature,with further validation of signature in real world samples from our hospital treated patient samples.Kaplan-Meier(K-M)survival analysis and receiver operating characteristic(ROC)curves were employed to evaluate this gene signature’s predictive accuracy and robustness in both training and testing cohorts,respectively.Additionally,the study utilized the CIBERSORT algorithm and single-sample gene set enrichment analysis to explore the signature’s immune infiltration landscape and underlying functional implications.The support vector machine algorithm was applied to evaluate the signature’s potential in predicting chemotherapy outcomes.The findings unveiled a novel three TRP channels-related gene signature(MCOLN1,TRPM5,and TRPV4)in colon adenocarcinoma(COAD).The ROC and K-M survival curves in the training dataset(AUC=0.761;p=1.58e-05)and testing dataset(AUC=0.699;p=0.004)showed the signature’s robust predictive capability for the overall survival of COAD patients.Analysis of the immune infiltration landscape associated with the signature revealed higher immune infiltration,especially an increased presence of M2 macrophages,in high-risk group patients compared to their low-risk counterparts.High-risk score patients also exhibited potential responsiveness to immune checkpoint inhibitor therapy,evident through increased CD86 and PD-1 expression profiles.Moreover,the TRPM5 gene within the signature was highly expressed in the chemoresistance group(p=0.00095)and associated with poor prognosis(p=0.036)in COAD patients,highlighting its role as a hub gene of chemoresistance.Ultimately,this signature emerged as an independent prognosis factor for COAD patients(p=6.48e-06)and expression of model gene are validated by public data and real-world patients.Overall,this bioinformatics study provides valuable insights into the prognostic implications and potential chemotherapy resistance mechanisms associated with TRPs-related genes in colon cancer.展开更多
In this paper,the channel impulse response matrix(CIRM)can be expressed as a sum of couplings between the steering vectors at the base station(BS)and the eigenbases at the mobile station(MS).Nakagami distribution was ...In this paper,the channel impulse response matrix(CIRM)can be expressed as a sum of couplings between the steering vectors at the base station(BS)and the eigenbases at the mobile station(MS).Nakagami distribution was used to describe the fading of the coupling between the steering vectors and the eigenbases.Extensive measurements were carried out to evaluate the performance of this proposed model.Furthermore,the physical implications of this model were illustrated and the capacities are analyzed.In addition,the azimuthal power spectrum(APS)of several models was analyzed.Finally,the channel hardening effect was simulated and discussed.Results showed that the proposed model provides a better fit to the measured results than the other CBSM,i.e.,Weichselberger model.Moreover,the proposed model can provide better tradeoff between accuracy and complexity in channel synthesis.This CIRM model can be used for massive MIMO design in the future communication system design.展开更多
Visible light communication(VLC)has attracted much attention in the research of sixthgeneration(6G)systems.Furthermore,channel modeling is the foundation for designing efficient and robust VLC systems.In this paper,we...Visible light communication(VLC)has attracted much attention in the research of sixthgeneration(6G)systems.Furthermore,channel modeling is the foundation for designing efficient and robust VLC systems.In this paper,we present extensive VLC channel measurement campaigns in indoor environments,i.e.,an office and a corridor.Based on the measured data,the large-scale fading characteristics and multipath-related characteristics,including omnidirectional optical path loss(OPL),K-factor,power angular spectrum(PAS),angle spread(AS),and clustering characteristics,are analyzed and modeled through a statistical method.Based on the extracted statistics of the above-mentioned channel characteristics,we propose a statistical spatial channel model(SSCM)capable of modeling multipath in the spatial domain.Furthermore,the simulated statistics of the proposed model are compared with the measured statistics.For instance,in the office,the simulated path loss exponent(PLE)and the measured PLE are 1.96and 1.97,respectively.And,the simulated medians of AS and measured medians of AS are 25.94°and 24.84°,respectively.Generally,the fact that the simulated results fit well with measured results has demonstrated the accuracy of our SSCM.展开更多
The central nervous system, information integration center of the body, is mainly composed of neurons and glial cells. The neuron is one of the most basic and important structural and functional units of the central n...The central nervous system, information integration center of the body, is mainly composed of neurons and glial cells. The neuron is one of the most basic and important structural and functional units of the central nervous system, with sensory stimulation and excitation conduction functions. Astrocytes and microglia belong to the glial cell family, which is the main source of cytokines and represents the main defense system of the central nervous system. Nerve cells undergo neurotransmission or gliotransmission, which regulates neuronal activity via the ion channels, receptors, or transporters expressed on nerve cell membranes. Ion channels, composed of large transmembrane proteins, play crucial roles in maintaining nerve cell homeostasis. These channels are also important for control of the membrane potential and in the secretion of neurotransmitters. A variety of cellular functions and life activities, including functional regulation of the central nervous system, the generation and conduction of nerve excitation, the occurrence of receptor potential, heart pulsation, smooth muscle peristalsis, skeletal muscle contraction, and hormone secretion, are closely related to ion channels associated with passive transmembrane transport. Two types of ion channels in the central nervous system, potassium channels and calcium channels, are closely related to various neurological disorders, including Alzheimer's disease, Parkinson's disease, and epilepsy. Accordingly, various drugs that can affect these ion channels have been explored deeply to provide new directions for the treatment of these neurological disorders. In this review, we focus on the functions of potassium and calcium ion channels in different nerve cells and their involvement in neurological disorders such as Parkinson's disease, Alzheimer's disease, depression, epilepsy, autism, and rare disorders. We also describe several clinical drugs that target potassium or calcium channels in nerve cells and could be used to treat these disorders. We concluded that there are few clinical drugs that can improve the pathology these diseases by acting on potassium or calcium ions. Although a few novel ion-channelspecific modulators have been discovered, meaningful therapies have largely not yet been realized. The lack of target-specific drugs, their requirement to cross the blood–brain barrier, and their exact underlying mechanisms all need further attention. This review aims to explain the urgent problems that need research progress and provide comprehensive information aiming to arouse the research community's interest in the development of ion channel-targeting drugs and the identification of new therapeutic targets for that can increase the cure rate of nervous system diseases and reduce the occurrence of adverse reactions in other systems.展开更多
A large amount of mobile data from growing high-speed train(HST)users makes intelligent HST communications enter the era of big data.The corresponding artificial intelligence(AI)based HST channel modeling becomes a tr...A large amount of mobile data from growing high-speed train(HST)users makes intelligent HST communications enter the era of big data.The corresponding artificial intelligence(AI)based HST channel modeling becomes a trend.This paper provides AI based channel characteristic prediction and scenario classification model for millimeter wave(mmWave)HST communications.Firstly,the ray tracing method verified by measurement data is applied to reconstruct four representative HST scenarios.By setting the positions of transmitter(Tx),receiver(Rx),and other parameters,the multi-scenarios wireless channel big data is acquired.Then,based on the obtained channel database,radial basis function neural network(RBF-NN)and back propagation neural network(BP-NN)are trained for channel characteristic prediction and scenario classification.Finally,the channel characteristic prediction and scenario classification capabilities of the network are evaluated by calculating the root mean square error(RMSE).The results show that RBF-NN can generally achieve better performance than BP-NN,and is more applicable to prediction of HST scenarios.展开更多
Calcium influx into neurons triggers neuronal death during cerebral ischemia/reperfusion injury.Various calcium channels are involved in cerebral ischemia/reperfusion injury.Cav3.2 channel is a main subtype of T-type ...Calcium influx into neurons triggers neuronal death during cerebral ischemia/reperfusion injury.Various calcium channels are involved in cerebral ischemia/reperfusion injury.Cav3.2 channel is a main subtype of T-type calcium channels.T-type calcium channel blockers,such as pimozide and mibefradil,have been shown to prevent cerebral ischemia/reperfusion injury-induced brain injury.However,the role of Cav3.2 channels in cerebral ischemia/reperfusion injury remains unclear.Here,in vitro and in vivo models of cerebral ischemia/reperfusion injury were established using middle cerebral artery occlusion in mice and high glucose hypoxia/reoxygenation exposure in primary hippocampal neurons.The results showed that Cav3.2 expression was significantly upregulated in injured hippocampal tissue and primary hippocampal neurons.We further established a Cav3.2 gene-knockout mouse model of cerebral ischemia/reperfusion injury.Cav3.2 knockout markedly reduced infarct volume and brain water content,and alleviated neurological dysfunction after cerebral ischemia/reperfusion injury.Additionally,Cav3.2 knockout attenuated cerebral ischemia/reperfusion injury-induced oxidative stress,inflammatory response,and neuronal apoptosis.In the hippocampus of Cav3.2-knockout mice,calcineurin overexpression offset the beneficial effect of Cav3.2 knockout after cerebral ischemia/reperfusion injury.These findings suggest that the neuroprotective function of Cav3.2 knockout is mediated by calcineurin/nuclear factor of activated T cells 3 signaling.Findings from this study suggest that Cav3.2 could be a promising target for treatment of cerebral ischemia/reperfusion injury.展开更多
Secret key generation(SKG)is a promising solution to the problem of wireless communications security.As the first step of SKG,channel probing affects it significantly.Although there have been some probing schemes,ther...Secret key generation(SKG)is a promising solution to the problem of wireless communications security.As the first step of SKG,channel probing affects it significantly.Although there have been some probing schemes,there is a lack of research on the optimization of the probing process.This study investigates how to optimize correlated parameters to maximize the SKG rate(SKGR)in the time-division duplex(TDD)mode.First,we build a probing model which includes the effects of transmitting power,the probing period,and the dimension of sample vectors.Based on the model,the analytical expression of the SKGR is given.Next,we formulate an optimization problem for maximizing the SKGR and give an algorithm to solve it.We conclude the SKGR monotonically increases as the transmitting power increases.Relevant mathematical proofs are given in this study.From the simulation results,increasing appropriately the probing period and the dimension of the sample vector could increase the SKGR dramatically compared to a yardstick,which indicates the importance of optimizing the parameters related to the channel probing phase.展开更多
A study has been arranged to investigate the flow of non-Newtonian fluid in a vertical asymmetrical channel using peristalsis. The porous medium allows the electrically conductive fluid to flow in the channel, while a...A study has been arranged to investigate the flow of non-Newtonian fluid in a vertical asymmetrical channel using peristalsis. The porous medium allows the electrically conductive fluid to flow in the channel, while a uniform magnetic field is applied perpendicular to the flow direction. The analysis takes into account the combined influence of heat and mass transfer, including the effects of Soret and Dufour. The flow’s non-Newtonian behavior is characterized using a Casson rheological model. The fluid flow equations are examined within a wave frame of reference that has a wave velocity. The analytic solution is examined using long wavelengths and a small Reynolds number assumption. The stream function, temperature, concentration and heat transfer coefficient expressions are derived. The bvp4c function from MATLAB has been used to numerically solve the transformed equations. The flow characteristics have been analyzed using graphs to demonstrate the impacts of different parameters.展开更多
Using the operator correspondence of the real and fictious modes in the thermo entangled state representation, wesolve the quantum master equation describing the diffusion channel and obtain the Kraus operator-sum rep...Using the operator correspondence of the real and fictious modes in the thermo entangled state representation, wesolve the quantum master equation describing the diffusion channel and obtain the Kraus operator-sum representation ofits analytical solution. we find that the pure coherent states evolve into the new mixed thermal superposed states in thediffusion channel. Also, we investigate the statistical properties of the initial coherent states and their entropy evolutions inthe diffusion channel, and find that the entropy evolutions are only related to the decay time and without the amplitudes ofthe initial coherent states.展开更多
With the gradual popularization of 5G communications,the application of multi-antenna broadcasting technology has become widespread.Therefore,this study aims to investigate the wireless covert communication in the two...With the gradual popularization of 5G communications,the application of multi-antenna broadcasting technology has become widespread.Therefore,this study aims to investigate the wireless covert communication in the two-user cooperative multi-antenna broadcast channel.We focus on the issue that the deteriorated reliability and undetectability are mainly affected by the transmission power.To tackle this issue,we design a scheme based on beamforming to increase the reliability and undetectability of wireless covert communication in the multi-antenna broadcast channel.We first modeled and analyzed the cooperative multi-antenna broadcasting system,and put forward the target question.Then we use the SCA(successive convex approximation)algorithm to transform the target problem into a series of convex subproblems.Then the convex problems are solved and the covert channel capacity is calculated.In order to verify the effectiveness of the scheme,we conducted simulation verification.The simulation results show that the proposed beamforming scheme can effectively improve the reliability and undetectability of covert communication in multi-antenna broadcast channels.展开更多
The transient friction in channel mean flows is the sum of two contributions,i.e.,the underlying laminar flow(ULF)and the purely turbulent component(PTC),and the contributions are analyzed separately by theoretical ex...The transient friction in channel mean flows is the sum of two contributions,i.e.,the underlying laminar flow(ULF)and the purely turbulent component(PTC),and the contributions are analyzed separately by theoretical experiments.It is found that,the transient friction may be higher or remarkably lower than that in equal-Reynolds number steady-state flows.The universal time constant for plane-parallel laminar flows is reported,and the role of the time constant in a turbulent mean flow is examined.It is shown that the time constant is related to the turbulence's frozen time.Finally,a study of the logarithmic layer during the transient flow is accomplished,which shows that the logarithmic layer is destroyed.展开更多
We consider an image semantic communication system in a time-varying fading Gaussian MIMO channel,with a finite number of channel states.A deep learning-aided broadcast approach scheme is proposed to benefit the adapt...We consider an image semantic communication system in a time-varying fading Gaussian MIMO channel,with a finite number of channel states.A deep learning-aided broadcast approach scheme is proposed to benefit the adaptive semantic transmission in terms of different channel states.We combine the classic broadcast approach with the image transformer to implement this adaptive joint source and channel coding(JSCC)scheme.Specifically,we utilize the neural network(NN)to jointly optimize the hierarchical image compression and superposition code mapping within this scheme.The learned transformers and codebooks allow recovering of the image with an adaptive quality and low error rate at the receiver side,in each channel state.The simulation results exhibit our proposed scheme can dynamically adapt the coding to the current channel state and outperform some existing intelligent schemes with the fixed coding block.展开更多
This letter proposes a sliced-gated-convolutional neural network with belief propagation(SGCNN-BP) architecture for decoding long codes under correlated noise. The basic idea of SGCNNBP is using Neural Networks(NN) to...This letter proposes a sliced-gated-convolutional neural network with belief propagation(SGCNN-BP) architecture for decoding long codes under correlated noise. The basic idea of SGCNNBP is using Neural Networks(NN) to transform the correlated noise into white noise, setting up the optimal condition for a standard BP decoder that takes the output from the NN. A gate-controlled neuron is used to regulate information flow and an optional operation—slicing is adopted to reduce parameters and lower training complexity. Simulation results show that SGCNN-BP has much better performance(with the largest gap being 5dB improvement) than a single BP decoder and achieves a nearly 1dB improvement compared to Fully Convolutional Networks(FCN).展开更多
基金supported in part by the National Nature Science Foundation(81874022 and 82172483 to Xinyu Liu,82102522 to Lianlei Wang,82072478 to Yunpeng Zhao,82072435 to Qiang Yang,82073437 to Weiwei Li,81930070 to Shiqing Feng,82272548 to Lei Cheng)Key R&D Project of Shandong Province(2022CXGC010503 to Xinyu Liu)+1 种基金Shandong Natural Science Foundation(ZR202102210113 to Lianlei Wang,ZR2020YQ54 to Yunpeng Zhao)Shandong Province Taishan Scholar Project(tsqn202211317 to Lianlei Wang).The authors thank the Translational Medicine Core Facility of Shandong University for the consultation and instrument availability that supported this work.
文摘To date,several molecules have been found to facilitate iron influx,while the types of iron influx channels remain to be elucidated.Here,Piezo1 channel was identified as a key iron transporter in response to mechanical stress.Piezo1-mediated iron overload disturbed iron metabolism and exaggerated ferroptosis in nucleus pulposus cells(NPCs).Importantly,Piezo1-induced iron influx was independent of the transferrin receptor(TFRC),a well-recognized iron gatekeeper.Furthermore,pharmacological inactivation of Piezo1 profoundly reduced iron accumulation,alleviated mitochondrial ROS,and suppressed ferroptotic alterations in stimulation of mechanical stress.Moreover,conditional knockout of Piezo1(Col2a1-CreERT Piezo1^(flox/flox))attenuated the mechanical injury-induced intervertebral disc degeneration(IVDD).Notably,the protective effect of Piezo1 deficiency in IVDD was dampened in Piezo1/Gpx4 conditional double knockout(cDKO)mice(Col2a1-CreERT Piezo1^(flox/flox)/Gpx4^(flox/flox)).These findings suggest that Piezo1 is a potential determinant of iron influx,indicating that the Piezo1-iron-ferroptosis axis might shed light on the treatment of mechanical stress-induced diseases.
基金the financial support from the National Natural Science Foundation of China(Nos.22205191 and 52002346)the Science and Technology Innovation Program of Hunan Province(No.2021RC3109)+1 种基金the Natural Science Foundation of Hunan Province,China(No.2022JJ40446)Guangxi Key Laboratory of Low Carbon Energy Material(No.2020GXKLLCEM01)。
文摘The concentration difference in the near-surface region of lithium metal is the main cause of lithium dendrite growth.Resolving this issue will be key to achieving high-performance lithium metal batteries(LMBs).Herein,we construct a lithium nitrate(LiNO_(3))-implanted electroactiveβphase polyvinylidene fluoride-co-hexafluoropropylene(PVDF-HFP)crystalline polymorph layer(PHL).The electronegatively charged polymer chains attain lithium ions on the surface to form lithium-ion charged channels.These channels act as reservoirs to sustainably release Li ions to recompense the ionic flux of electrolytes,decreasing the growth of lithium dendrites.The stretched molecular channels can also accelerate the transport of Li ions.The combined effects enable a high Coulombic efficiency of 97.0%for 250 cycles in lithium(Li)||copper(Cu)cell and a stable symmetric plating/stripping behavior over 2000 h at 3 mA cm^(-2)with ultrahigh Li utilization of 50%.Furthermore,the full cell coupled with PHL-Cu@Li anode and Li Fe PO_(4) cathode exhibits long-term cycle stability with high-capacity retention of 95.9%after 900 cycles.Impressively,the full cell paired with LiNi_(0.87)Co_(0.1)Mn_(0.03)O_(2)maintains a discharge capacity of 170.0 mAh g^(-1)with a capacity retention of 84.3%after 100 cycles even under harsh condition of ultralow N/P ratio of 0.83.This facile strategy will widen the potential application of LiNO_(3)in ester-based electrolyte for practical high-voltage LMBs.
基金supported in part by the National Natural Science Foundation of China(NSFC)under Grants 61941104,61921004the Key Research and Development Program of Shandong Province under Grant 2020CXGC010108+1 种基金the Southeast University-China Mobile Research Institute Joint Innovation Centersupported in part by the Scientific Research Foundation of Graduate School of Southeast University under Grant YBPY2118.
文摘The great potentials of massive Multiple-Input Multiple-Output(MIMO)in Frequency Division Duplex(FDD)mode can be fully exploited when the downlink Channel State Information(CSI)is available at base stations.However,the accurate CsI is difficult to obtain due to the large amount of feedback overhead caused by massive antennas.In this paper,we propose a deep learning based joint channel estimation and feedback framework,which comprehensively realizes the estimation,compression,and reconstruction of downlink channels in FDD massive MIMO systems.Two networks are constructed to perform estimation and feedback explicitly and implicitly.The explicit network adopts a multi-Signal-to-Noise-Ratios(SNRs)technique to obtain a single trained channel estimation subnet that works well with different SNRs and employs a deep residual network to reconstruct the channels,while the implicit network directly compresses pilots and sends them back to reduce network parameters.Quantization module is also designed to generate data-bearing bitstreams.Simulation results show that the two proposed networks exhibit excellent performance of reconstruction and are robust to different environments and quantization errors.
基金supported by the Key R&D Project of the Ministry of Science and Technology of China(2020YFB1808005)。
文摘Low Earth Orbit(LEO)multibeam satellites will be widely used in the next generation of satellite communication systems,whose inter-beam interference will inevitably limit the performance of the whole system.Nonlinear precoding such as Tomlinson-Harashima precoding(THP)algorithm has been proved to be a promising technology to solve this problem,which has smaller noise amplification effect compared with linear precoding.However,the similarity of different user channels(defined as channel correlation)will degrade the performance of THP algorithm.In this paper,we qualitatively analyze the inter-beam interference in the whole process of LEO satellite over a specific coverage area,and the impact of channel correlation on Signal-to-Noise Ratio(SNR)of receivers when THP is applied.One user grouping algorithm is proposed based on the analysis of channel correlation,which could decrease the number of users with high channel correlation in each precoding group,thus improve the performance of THP.Furthermore,our algorithm is designed under the premise of co-frequency deployment and orthogonal frequency division multiplexing(OFDM),which leads to more users under severe inter-beam interference compared to the existing research on geostationary orbit satellites broadcasting systems.Simulation results show that the proposed user grouping algorithm possesses higher channel capacity and better bit error rate(BER)performance in high SNR conditions relative to existing works.
基金financially supported by the National Key Research and Development Program(Grant No.2022YFE0107000)the General Projects of the National Natural Science Foundation of China(Grant No.52171259)the High-Tech Ship Research Project of the Ministry of Industry and Information Technology(Grant No.[2021]342)。
文摘Identification of the ice channel is the basic technology for developing intelligent ships in ice-covered waters,which is important to ensure the safety and economy of navigation.In the Arctic,merchant ships with low ice class often navigate in channels opened up by icebreakers.Navigation in the ice channel often depends on good maneuverability skills and abundant experience from the captain to a large extent.The ship may get stuck if steered into ice fields off the channel.Under this circumstance,it is very important to study how to identify the boundary lines of ice channels with a reliable method.In this paper,a two-staged ice channel identification method is developed based on image segmentation and corner point regression.The first stage employs the image segmentation method to extract channel regions.In the second stage,an intelligent corner regression network is proposed to extract the channel boundary lines from the channel region.A non-intelligent angle-based filtering and clustering method is proposed and compared with corner point regression network.The training and evaluation of the segmentation method and corner regression network are carried out on the synthetic and real ice channel dataset.The evaluation results show that the accuracy of the method using the corner point regression network in the second stage is achieved as high as 73.33%on the synthetic ice channel dataset and 70.66%on the real ice channel dataset,and the processing speed can reach up to 14.58frames per second.
文摘The influence of variable viscosity and double diffusion on the convective stability of a nanofluid flow in an inclined porous channel is investigated.The DarcyBrinkman model is used to characterize the fluid flow dynamics in porous materials.The analytical solutions are obtained for the unidirectional and completely developed flow.Based on a normal mode analysis,the generalized eigenvalue problem under a perturbed state is solved.The eigenvalue problem is then solved by the spectral method.Finally,the critical Rayleigh number with the corresponding wavenumber is evaluated at the assigned values of the other flow-governing parameters.The results show that increasing the Darcy number,the Lewis number,the Dufour parameter,or the Soret parameter increases the stability of the system,whereas increasing the inclination angle of the channel destabilizes the flow.Besides,the flow is the most unstable when the channel is vertically oriented.
基金supported in part by the Sichuan Science and Technology Program(Grant No.2023YFG0316)the Industry-University Research Innovation Fund of China University(Grant No.2021ITA10016)+1 种基金the Key Scientific Research Fund of Xihua University(Grant No.Z1320929)the Special Funds of Industry Development of Sichuan Province(Grant No.zyf-2018-056).
文摘Due to the interdependency of frame synchronization(FS)and channel estimation(CE),joint FS and CE(JFSCE)schemes are proposed to enhance their functionalities and therefore boost the overall performance of wireless communication systems.Although traditional JFSCE schemes alleviate the influence between FS and CE,they show deficiencies in dealing with hardware imperfection(HI)and deterministic line-of-sight(LOS)path.To tackle this challenge,we proposed a cascaded ELM-based JFSCE to alleviate the influence of HI in the scenario of the Rician fading channel.Specifically,the conventional JFSCE method is first employed to extract the initial features,and thus forms the non-Neural Network(NN)solutions for FS and CE,respectively.Then,the ELMbased networks,named FS-NET and CE-NET,are cascaded to capture the NN solutions of FS and CE.Simulation and analysis results show that,compared with the conventional JFSCE methods,the proposed cascaded ELM-based JFSCE significantly reduces the error probability of FS and the normalized mean square error(NMSE)of CE,even against the impacts of parameter variations.
基金the Ethics Committee of University Magdeburg(Ethical code:33/0119.03.2001).
文摘Transient receptor potential(TRP)channels are strongly associated with colon cancer development and progression.This study leveraged a multivariate Cox regression model on publicly available datasets to construct a TRP channels-associated gene signature,with further validation of signature in real world samples from our hospital treated patient samples.Kaplan-Meier(K-M)survival analysis and receiver operating characteristic(ROC)curves were employed to evaluate this gene signature’s predictive accuracy and robustness in both training and testing cohorts,respectively.Additionally,the study utilized the CIBERSORT algorithm and single-sample gene set enrichment analysis to explore the signature’s immune infiltration landscape and underlying functional implications.The support vector machine algorithm was applied to evaluate the signature’s potential in predicting chemotherapy outcomes.The findings unveiled a novel three TRP channels-related gene signature(MCOLN1,TRPM5,and TRPV4)in colon adenocarcinoma(COAD).The ROC and K-M survival curves in the training dataset(AUC=0.761;p=1.58e-05)and testing dataset(AUC=0.699;p=0.004)showed the signature’s robust predictive capability for the overall survival of COAD patients.Analysis of the immune infiltration landscape associated with the signature revealed higher immune infiltration,especially an increased presence of M2 macrophages,in high-risk group patients compared to their low-risk counterparts.High-risk score patients also exhibited potential responsiveness to immune checkpoint inhibitor therapy,evident through increased CD86 and PD-1 expression profiles.Moreover,the TRPM5 gene within the signature was highly expressed in the chemoresistance group(p=0.00095)and associated with poor prognosis(p=0.036)in COAD patients,highlighting its role as a hub gene of chemoresistance.Ultimately,this signature emerged as an independent prognosis factor for COAD patients(p=6.48e-06)and expression of model gene are validated by public data and real-world patients.Overall,this bioinformatics study provides valuable insights into the prognostic implications and potential chemotherapy resistance mechanisms associated with TRPs-related genes in colon cancer.
基金supported by the Key R&D Project of Jiangsu Province(Modern Agriculture)under Grant BE2022322 the"Pilot Plan"Internet of Things special project(China Institute of Io T(wuxi)and Wuxi Internet of Things Innovation Promotion Center)under Grant 2022SP-T16-Bin part by the 111 Project under Grant B12018+2 种基金in part by the Six talent peaks project in Jiangsu Provincein part by the open foundation of Key Laboratory of Wireless Sensor Network and Communication,Shanghai Institute of Microsystem and Information Technology,Chinese Academy of Sciences under Grant 20190917in part by the open research fund of Key Lab of Broadband Wireless Communication and Sensor Network Technology(Nanjing University of Posts and Telecommunications,Ministry of Education)。
文摘In this paper,the channel impulse response matrix(CIRM)can be expressed as a sum of couplings between the steering vectors at the base station(BS)and the eigenbases at the mobile station(MS).Nakagami distribution was used to describe the fading of the coupling between the steering vectors and the eigenbases.Extensive measurements were carried out to evaluate the performance of this proposed model.Furthermore,the physical implications of this model were illustrated and the capacities are analyzed.In addition,the azimuthal power spectrum(APS)of several models was analyzed.Finally,the channel hardening effect was simulated and discussed.Results showed that the proposed model provides a better fit to the measured results than the other CBSM,i.e.,Weichselberger model.Moreover,the proposed model can provide better tradeoff between accuracy and complexity in channel synthesis.This CIRM model can be used for massive MIMO design in the future communication system design.
基金supported by the National Science Fund for Distinguished Young Scholars(No.61925102)the National Natural Science Foundation of China(No.62201086,92167202,62201087,62101069)BUPT-CMCC Joint Innovation Center,and State Key Laboratory of IPOC(BUPT)(No.IPOC2023ZT02),China。
文摘Visible light communication(VLC)has attracted much attention in the research of sixthgeneration(6G)systems.Furthermore,channel modeling is the foundation for designing efficient and robust VLC systems.In this paper,we present extensive VLC channel measurement campaigns in indoor environments,i.e.,an office and a corridor.Based on the measured data,the large-scale fading characteristics and multipath-related characteristics,including omnidirectional optical path loss(OPL),K-factor,power angular spectrum(PAS),angle spread(AS),and clustering characteristics,are analyzed and modeled through a statistical method.Based on the extracted statistics of the above-mentioned channel characteristics,we propose a statistical spatial channel model(SSCM)capable of modeling multipath in the spatial domain.Furthermore,the simulated statistics of the proposed model are compared with the measured statistics.For instance,in the office,the simulated path loss exponent(PLE)and the measured PLE are 1.96and 1.97,respectively.And,the simulated medians of AS and measured medians of AS are 25.94°and 24.84°,respectively.Generally,the fact that the simulated results fit well with measured results has demonstrated the accuracy of our SSCM.
基金supported by the National Natural Science Foundation of China,Nos.81901098(to TC),82201668(to HL)Fujian Provincial Health Technology Project,No.2021QNA072(to HL)。
文摘The central nervous system, information integration center of the body, is mainly composed of neurons and glial cells. The neuron is one of the most basic and important structural and functional units of the central nervous system, with sensory stimulation and excitation conduction functions. Astrocytes and microglia belong to the glial cell family, which is the main source of cytokines and represents the main defense system of the central nervous system. Nerve cells undergo neurotransmission or gliotransmission, which regulates neuronal activity via the ion channels, receptors, or transporters expressed on nerve cell membranes. Ion channels, composed of large transmembrane proteins, play crucial roles in maintaining nerve cell homeostasis. These channels are also important for control of the membrane potential and in the secretion of neurotransmitters. A variety of cellular functions and life activities, including functional regulation of the central nervous system, the generation and conduction of nerve excitation, the occurrence of receptor potential, heart pulsation, smooth muscle peristalsis, skeletal muscle contraction, and hormone secretion, are closely related to ion channels associated with passive transmembrane transport. Two types of ion channels in the central nervous system, potassium channels and calcium channels, are closely related to various neurological disorders, including Alzheimer's disease, Parkinson's disease, and epilepsy. Accordingly, various drugs that can affect these ion channels have been explored deeply to provide new directions for the treatment of these neurological disorders. In this review, we focus on the functions of potassium and calcium ion channels in different nerve cells and their involvement in neurological disorders such as Parkinson's disease, Alzheimer's disease, depression, epilepsy, autism, and rare disorders. We also describe several clinical drugs that target potassium or calcium channels in nerve cells and could be used to treat these disorders. We concluded that there are few clinical drugs that can improve the pathology these diseases by acting on potassium or calcium ions. Although a few novel ion-channelspecific modulators have been discovered, meaningful therapies have largely not yet been realized. The lack of target-specific drugs, their requirement to cross the blood–brain barrier, and their exact underlying mechanisms all need further attention. This review aims to explain the urgent problems that need research progress and provide comprehensive information aiming to arouse the research community's interest in the development of ion channel-targeting drugs and the identification of new therapeutic targets for that can increase the cure rate of nervous system diseases and reduce the occurrence of adverse reactions in other systems.
基金supported by the National Key R&D Program of China under Grant 2021YFB1407001the National Natural Science Foundation of China (NSFC) under Grants 62001269 and 61960206006+2 种基金the State Key Laboratory of Rail Traffic Control and Safety (under Grants RCS2022K009)Beijing Jiaotong University, the Future Plan Program for Young Scholars of Shandong Universitythe EU H2020 RISE TESTBED2 project under Grant 872172
文摘A large amount of mobile data from growing high-speed train(HST)users makes intelligent HST communications enter the era of big data.The corresponding artificial intelligence(AI)based HST channel modeling becomes a trend.This paper provides AI based channel characteristic prediction and scenario classification model for millimeter wave(mmWave)HST communications.Firstly,the ray tracing method verified by measurement data is applied to reconstruct four representative HST scenarios.By setting the positions of transmitter(Tx),receiver(Rx),and other parameters,the multi-scenarios wireless channel big data is acquired.Then,based on the obtained channel database,radial basis function neural network(RBF-NN)and back propagation neural network(BP-NN)are trained for channel characteristic prediction and scenario classification.Finally,the channel characteristic prediction and scenario classification capabilities of the network are evaluated by calculating the root mean square error(RMSE).The results show that RBF-NN can generally achieve better performance than BP-NN,and is more applicable to prediction of HST scenarios.
基金supported by the Natural Science Foundation of Anhui Province of China,No.2208085Y32Scientific Research Plan Project of Anhui Province of China,No.2022AH020076the Chen Xiao-Ping Foundation for the Development of Science and Technology of Hubei Province,No.CXPJJH12000005-07-115(all to CT).
文摘Calcium influx into neurons triggers neuronal death during cerebral ischemia/reperfusion injury.Various calcium channels are involved in cerebral ischemia/reperfusion injury.Cav3.2 channel is a main subtype of T-type calcium channels.T-type calcium channel blockers,such as pimozide and mibefradil,have been shown to prevent cerebral ischemia/reperfusion injury-induced brain injury.However,the role of Cav3.2 channels in cerebral ischemia/reperfusion injury remains unclear.Here,in vitro and in vivo models of cerebral ischemia/reperfusion injury were established using middle cerebral artery occlusion in mice and high glucose hypoxia/reoxygenation exposure in primary hippocampal neurons.The results showed that Cav3.2 expression was significantly upregulated in injured hippocampal tissue and primary hippocampal neurons.We further established a Cav3.2 gene-knockout mouse model of cerebral ischemia/reperfusion injury.Cav3.2 knockout markedly reduced infarct volume and brain water content,and alleviated neurological dysfunction after cerebral ischemia/reperfusion injury.Additionally,Cav3.2 knockout attenuated cerebral ischemia/reperfusion injury-induced oxidative stress,inflammatory response,and neuronal apoptosis.In the hippocampus of Cav3.2-knockout mice,calcineurin overexpression offset the beneficial effect of Cav3.2 knockout after cerebral ischemia/reperfusion injury.These findings suggest that the neuroprotective function of Cav3.2 knockout is mediated by calcineurin/nuclear factor of activated T cells 3 signaling.Findings from this study suggest that Cav3.2 could be a promising target for treatment of cerebral ischemia/reperfusion injury.
基金supported in part by the national natural science foundation of China (NSFC) under Grant61871193in part by the R&D Program of key science and technology fields in Guangdong province under Grant 2019B090912001in part by the Guangzhou Key Field R&D Program under Grant 202206030005
文摘Secret key generation(SKG)is a promising solution to the problem of wireless communications security.As the first step of SKG,channel probing affects it significantly.Although there have been some probing schemes,there is a lack of research on the optimization of the probing process.This study investigates how to optimize correlated parameters to maximize the SKG rate(SKGR)in the time-division duplex(TDD)mode.First,we build a probing model which includes the effects of transmitting power,the probing period,and the dimension of sample vectors.Based on the model,the analytical expression of the SKGR is given.Next,we formulate an optimization problem for maximizing the SKGR and give an algorithm to solve it.We conclude the SKGR monotonically increases as the transmitting power increases.Relevant mathematical proofs are given in this study.From the simulation results,increasing appropriately the probing period and the dimension of the sample vector could increase the SKGR dramatically compared to a yardstick,which indicates the importance of optimizing the parameters related to the channel probing phase.
文摘A study has been arranged to investigate the flow of non-Newtonian fluid in a vertical asymmetrical channel using peristalsis. The porous medium allows the electrically conductive fluid to flow in the channel, while a uniform magnetic field is applied perpendicular to the flow direction. The analysis takes into account the combined influence of heat and mass transfer, including the effects of Soret and Dufour. The flow’s non-Newtonian behavior is characterized using a Casson rheological model. The fluid flow equations are examined within a wave frame of reference that has a wave velocity. The analytic solution is examined using long wavelengths and a small Reynolds number assumption. The stream function, temperature, concentration and heat transfer coefficient expressions are derived. The bvp4c function from MATLAB has been used to numerically solve the transformed equations. The flow characteristics have been analyzed using graphs to demonstrate the impacts of different parameters.
基金Collaborative Innovation Project of University,Anhui Province(Grant No.GXXT-2022-088).
文摘Using the operator correspondence of the real and fictious modes in the thermo entangled state representation, wesolve the quantum master equation describing the diffusion channel and obtain the Kraus operator-sum representation ofits analytical solution. we find that the pure coherent states evolve into the new mixed thermal superposed states in thediffusion channel. Also, we investigate the statistical properties of the initial coherent states and their entropy evolutions inthe diffusion channel, and find that the entropy evolutions are only related to the decay time and without the amplitudes ofthe initial coherent states.
基金supported by the National Natural Science Foundation of China(Grants No.U1836104,61772281,61702235,61801073,61931004,62072250).
文摘With the gradual popularization of 5G communications,the application of multi-antenna broadcasting technology has become widespread.Therefore,this study aims to investigate the wireless covert communication in the two-user cooperative multi-antenna broadcast channel.We focus on the issue that the deteriorated reliability and undetectability are mainly affected by the transmission power.To tackle this issue,we design a scheme based on beamforming to increase the reliability and undetectability of wireless covert communication in the multi-antenna broadcast channel.We first modeled and analyzed the cooperative multi-antenna broadcasting system,and put forward the target question.Then we use the SCA(successive convex approximation)algorithm to transform the target problem into a series of convex subproblems.Then the convex problems are solved and the covert channel capacity is calculated.In order to verify the effectiveness of the scheme,we conducted simulation verification.The simulation results show that the proposed beamforming scheme can effectively improve the reliability and undetectability of covert communication in multi-antenna broadcast channels.
文摘The transient friction in channel mean flows is the sum of two contributions,i.e.,the underlying laminar flow(ULF)and the purely turbulent component(PTC),and the contributions are analyzed separately by theoretical experiments.It is found that,the transient friction may be higher or remarkably lower than that in equal-Reynolds number steady-state flows.The universal time constant for plane-parallel laminar flows is reported,and the role of the time constant in a turbulent mean flow is examined.It is shown that the time constant is related to the turbulence's frozen time.Finally,a study of the logarithmic layer during the transient flow is accomplished,which shows that the logarithmic layer is destroyed.
基金supported in part by the National Key R&D Project of China under Grant 2020YFA0712300National Natural Science Foundation of China under Grant NSFC-62231022,12031011supported in part by the NSF of China under Grant 62125108。
文摘We consider an image semantic communication system in a time-varying fading Gaussian MIMO channel,with a finite number of channel states.A deep learning-aided broadcast approach scheme is proposed to benefit the adaptive semantic transmission in terms of different channel states.We combine the classic broadcast approach with the image transformer to implement this adaptive joint source and channel coding(JSCC)scheme.Specifically,we utilize the neural network(NN)to jointly optimize the hierarchical image compression and superposition code mapping within this scheme.The learned transformers and codebooks allow recovering of the image with an adaptive quality and low error rate at the receiver side,in each channel state.The simulation results exhibit our proposed scheme can dynamically adapt the coding to the current channel state and outperform some existing intelligent schemes with the fixed coding block.
基金supported by Beijing Natural Science Foundation (L202003)。
文摘This letter proposes a sliced-gated-convolutional neural network with belief propagation(SGCNN-BP) architecture for decoding long codes under correlated noise. The basic idea of SGCNNBP is using Neural Networks(NN) to transform the correlated noise into white noise, setting up the optimal condition for a standard BP decoder that takes the output from the NN. A gate-controlled neuron is used to regulate information flow and an optional operation—slicing is adopted to reduce parameters and lower training complexity. Simulation results show that SGCNN-BP has much better performance(with the largest gap being 5dB improvement) than a single BP decoder and achieves a nearly 1dB improvement compared to Fully Convolutional Networks(FCN).