The high-speed train transmission system,experiencing both the internal excitation originating from gear meshing and the external excitation originating from the wheel-rail interaction,exhibits complex dynamic behavio...The high-speed train transmission system,experiencing both the internal excitation originating from gear meshing and the external excitation originating from the wheel-rail interaction,exhibits complex dynamic behavior in the actual service environment.This paper focuses on the gearbox in the high-speed train to carry out the bench test,in which various operat-ing conditions(torques and rotation speeds)were set up and the excitation condition covering both internal and external was created.Acceleration responses on multiple positions of the gearbox were acquired in the test and the vibration behavior of the gearbox was studied.Meanwhile,a stochastic excitation modal test was also carried out on the test bench under different torques,and the modal parameter of the gearbox was identified.Finally,the sweep frequency response of the gearbox under gear meshing excitation was analyzed through dynamic modeling.The results showed that the torque has an attenuating effect on the amplitude of gear meshing frequency on the gearbox,and the effect of external excitation on the gearbox vibration cannot be ignored,especially under the rated operating condition.It was also found that the torque affects the modal param-eter of the gearbox significantly.The torque has a great effect on both the gear meshing stiffness and the bearing stiffness in the transmission system,which is the inherent reason for the changed modal characteristics observed in the modal test and affects the vibration behavior of the gearbox consequently.展开更多
High-speed trains typically utilize helical gear transmissions,which significantly impact the bearing load capacity and fatigue service performance of the gearbox bearings.This paper focuses on the gearbox bearings,es...High-speed trains typically utilize helical gear transmissions,which significantly impact the bearing load capacity and fatigue service performance of the gearbox bearings.This paper focuses on the gearbox bearings,establishing dynamic models for both helical gear and herringbone gear transmissions in high-speed trains.The modeling particularly emphasizes the precision of the bearings at the gearbox's pinion and gear wheels.Using this model,a comparative analysis is conducted on the bearing loads and contact stresses of the gearbox bearings under uniform-speed operation between the two gear transmissions.The findings reveal that the helical gear transmission generates axial forces leading to severe load imbalance on the bearings at both sides of the large gear,and this imbalance intensifies with the increase in train speed.Consequently,this results in a significant increase in contact stress on the bearings on one side.The adoption of herringbone gear transmission effectively suppresses axial forces,resolving the load imbalance issue and substantially reducing the contact stress on the originally biased side of the bearings.The study demonstrates that employing herringbone gear transmission can significantly enhance the service performance of high-speed train gearbox bearings,thereby extending their service life.展开更多
The railway vehicle gearbox is an important part of the railway vehicle traction transmission system which ensures the smooth running of railway vehicles.However,as the running speed of railway vehicles continues to i...The railway vehicle gearbox is an important part of the railway vehicle traction transmission system which ensures the smooth running of railway vehicles.However,as the running speed of railway vehicles continues to increase,the railway vehicle gearbox is exposed to a more demanding operating environment.Under both internal and external excitations,the gearbox is prone to faults such as fatigue cracks,and broken teeth.It is crucial to detect these faults before they result in severe failures and accidents.Therefore,understanding the dynamics and fault diagnosis of railway vehicle gearbox is needed.At present,there is a lack of systematic review of railway vehicle gearbox dynamics and fault diagnosis.So,this paper systematically summarizes the research progress on railway vehicle gearbox dynamics and fault diagnosis.To this end,this paper first summarizes the latest research progress on the dynamics of railway vehicle gearboxes.The dynamics and vibration characteristics of the gearbox are summarized under internal and external excitations,as well as faulty conditions.Then,the stateof-the-art signal processing and artificial intelligence methods for fault diagnosis of railway vehicle gearboxes are reviewed.In the end,future research prospects are given.展开更多
The load spectrum is a crucial factor for assess-ing the fatigue reliability of in-service rolling element bear-ings in transmission systems.For a bearing in a high-speed train gearbox,a measurement technique based on...The load spectrum is a crucial factor for assess-ing the fatigue reliability of in-service rolling element bear-ings in transmission systems.For a bearing in a high-speed train gearbox,a measurement technique based on strain detection of bearing outer ring was used to instrument the bearing and determine the time histories of the distributed load in the bearing under different gear meshing conditions.Accordingly,the load spectrum of the total radial load car-ried by the bearing was compiled.The mean value and class interval of the obtained load spectrum were found to vary non-monotonously with the speed and torque of gear mesh-ing,which was considered to be caused by the vibration of the shaft and the bearing cage.As the realistic service load input of bearing life assessment,the measured load spectrum under different gear meshing conditions can be used to pre-dict gearbox bearing life realistically based on the damage-equivalent principle and actual operating conditions.展开更多
Gearbox is a key part in machinery,in which gear,shaft and bearing operate together to transmit motion and power.The wide usage and high failure rate of gearbox make it attract much attention on its health monitoring ...Gearbox is a key part in machinery,in which gear,shaft and bearing operate together to transmit motion and power.The wide usage and high failure rate of gearbox make it attract much attention on its health monitoring and fault diagnosis.Dynamic modelling can study the mechanism under different faults and provide theoretical foundation for fault detection.However,current commonly used gear dynamic model usually neglects the influence of bearing and shaft,resulting in incomplete understanding of gearbox fault diagnosis especially under the effect of local defects on gear and shaft.To address this problem,an improved gear-shaft-bearing-housing dynamic model is proposed to reveal the vibration mechanism and responses considering shaft whirling and gear local defects.Firstly,an eighteen degree-of-freedom gearbox dynamic model is proposed,taking into account the interaction among gear,bearing and shaft.Secondly,the dynamic model is iteratively solved.Then,vibration responses are expounded and analysed considering gear spalling and shaft crack.Numerical results show that the gear mesh frequency and its harmonics have higher amplitude through the spectrum.Vibration RMS and the shaft rotating frequency increase with the spalling size and shaft crack angle in general.An experiment is designed to verify the rationality of the proposed gearbox model.Lastly,comprehensive analysis under different spalling size and shaft crack angle are analysed.Results show that when spalling size and crack angle are larger,RMS and the amplitude of shaft rotating frequency will not increase linearly.The dynamic model can accurately simulate the vibration of gear transmission system,which is helpful for gearbox fault diagnosis.展开更多
Wind turbine planetary gearboxes usually work under time-varying conditions,leading to nonstationary vibration signals.These signals often consist of multiple time-varying components with close instantaneous frequenci...Wind turbine planetary gearboxes usually work under time-varying conditions,leading to nonstationary vibration signals.These signals often consist of multiple time-varying components with close instantaneous frequencies.Therefore,high-quality time-frequency analysis(TFA)is needed to extract the time-frequency feature from such nonstationary signals for fault diagnosis.However,it is difficult to obtain high-quality timefrequency representations(TFRs)through conventional TFA methods due to low resolution and time-frequency blurs.To address this issue,we propose a new TFA method termed the proportion-extracting synchrosqueezing chirplet transform(PESCT).Firstly,the proportion-extracting chirplet transform is employed to generate highresolution underlying TFRs.Then,the energy concentration of the underlying TFRs is enhanced via the synchrosqueezing transform.Finally,wind turbine planetary gearbox fault can be diagnosed by analysis of the dominant time-varying components revealed by the concentrated TFRs with high resolution.The proposed PESCT is suitable for achieving high-quality TFRs for complicated nonstationary signals.Numerical and experimental analyses validate the effectiveness of the PESCT in characterizing the nonstationary signals from wind turbine planetary gearboxes.展开更多
Lubricating greases are widely used in e.g.open gear drives and gearboxes with difficult sealing conditions.The efficiency and heat balance of grease-lubricated gearboxes depend strongly on the lubrication mechanisms ...Lubricating greases are widely used in e.g.open gear drives and gearboxes with difficult sealing conditions.The efficiency and heat balance of grease-lubricated gearboxes depend strongly on the lubrication mechanisms channeling and circulating,for which the grease flow is causal.The computational fluid dynamics opens up the possibility to visualize and understand the grease flow in gearboxes in more detail.In this study,a single-stage gearbox lubricated with an NLGI 1-2 grease was modeled by the finite-volume method to numerically investigate the fluid flow.Results show that the rotating gears influence the grease sump only locally around the gears.For a low grease fill volume,the rotation of the gears is widely separated from the grease sump.For a high grease fill volume,a pronounced geargrease interaction results in a circulating grease flow around the gears.The simulated grease distributions show good accordance with high-speed camera recordings.展开更多
Effective fault diagnosis of planetary gearboxes is critical for ensuring the safety and dependability of mechanical drive systems.Nevertheless,variable conditions and inadequate fault data bring huge challenges to it...Effective fault diagnosis of planetary gearboxes is critical for ensuring the safety and dependability of mechanical drive systems.Nevertheless,variable conditions and inadequate fault data bring huge challenges to its practical fault diagnosis.Taking this into account,this study presents a new intelligent fault diagnosis(IFD)approach for planetary gearbox using a transferable deep Q network(TDQN)that merges deep reinforcement learning(DRL)and transfer learning(TL).First,a DRL environment simulation is designed by a predefined classification Markov decision process.Then,leveraging varied-size convolutions and residual learning,a multiscale residual convolutional neural network agent for TDQN is created to automatically learn meaningful features directly from vibration signals while avoiding model degradation.Next,a large source dataset is obtained from complex conditions,and this agent learns an IFD policy via autonomous interaction with the data environment.Finally,a parameter-based TL strategy is adopted to retrain the model on target datasets with variable conditions and small training data,which is conducted by fine-tuning the model parameters gained from the source task to accomplish target tasks.The results show that this TDQN outperforms not only state-of-the-art methods in a source task with an accuracy of 98.53%but also in two target tasks with 99.63%and 98.37%,respectively.展开更多
The goal of this research is to look at multi-target optimization of a two-stage helical gearbox in order to determine the best key design elements for reducing gearbox height and enhancing gearbox efficiency.To do th...The goal of this research is to look at multi-target optimization of a two-stage helical gearbox in order to determine the best key design elements for reducing gearbox height and enhancing gearbox efficiency.To do this,the method known as Taguchi and GRA(Grey Relation Analysis)were used in two stages to address the problem.The single-objective optimization problem was addressed first to close the gap between variable levels,and then the multi-objective optimization problem was solved to determine the best primary design variables.The first and second stage CWFWs(Coefficients of Wheel Face Width),ACS(Permissible Contact Stresses),and first stage gear ratio were also calculated.The study’s findings were utilized to identify the best values for five critical design aspects of a two-stage helical gearbox.展开更多
Purpose-This study aims to ensure the operation safety of high speed trains,it is necessary to carry out nondestructive monitoring of the tensile damage of the gearbox housing material in rail time,yet the traditional...Purpose-This study aims to ensure the operation safety of high speed trains,it is necessary to carry out nondestructive monitoring of the tensile damage of the gearbox housing material in rail time,yet the traditional tests of mechanical property can hardly meet this requirement.Design/methodology/approach-In this study the acoustic emission(AE)technology is applied in the tensile tests of the gearbox housing material of an high-speed rail(HSR)train,during which the acoustic signatures are acquired for parameter analysis.Afterward,the support vector machine(SVM)classifier is introduced to identify and classify the characteristic parameters extracted,on which basis the SVM is improved and the weighted support vector machine(WSVM)method is applied to effectively reduce the misidentification of the SVM classifier.Through the study of the law of relations between the characteristic values and the tensile life,a degradation model of the gearbox housing material amid tensile is built.Findings-The results show that the growth rate of the logarithmic hit count of AE signals and that of logarithmic amplitude can well characterize the stage of the material tensile process,and the WSVM method can improve the classification accuracy of the imbalanced data to above 94%.The degradation model built can identify the damage occurred to the HSR gearbox housing material amid the tensile process and predict the service life remains.Originality/value-The results of this study provide new concepts for the life prediction of tensile samples,and more further tests should be conducted to verify the conclusion of this research.展开更多
基金The authors are grateful for the financial support from the National Key Research and Development Program of China(Grant No.2021YFB3400701)the Fundamental Research Funds for the Central Universities(Science and technology leading talent team project,Grant No.2022JBQY007).
文摘The high-speed train transmission system,experiencing both the internal excitation originating from gear meshing and the external excitation originating from the wheel-rail interaction,exhibits complex dynamic behavior in the actual service environment.This paper focuses on the gearbox in the high-speed train to carry out the bench test,in which various operat-ing conditions(torques and rotation speeds)were set up and the excitation condition covering both internal and external was created.Acceleration responses on multiple positions of the gearbox were acquired in the test and the vibration behavior of the gearbox was studied.Meanwhile,a stochastic excitation modal test was also carried out on the test bench under different torques,and the modal parameter of the gearbox was identified.Finally,the sweep frequency response of the gearbox under gear meshing excitation was analyzed through dynamic modeling.The results showed that the torque has an attenuating effect on the amplitude of gear meshing frequency on the gearbox,and the effect of external excitation on the gearbox vibration cannot be ignored,especially under the rated operating condition.It was also found that the torque affects the modal param-eter of the gearbox significantly.The torque has a great effect on both the gear meshing stiffness and the bearing stiffness in the transmission system,which is the inherent reason for the changed modal characteristics observed in the modal test and affects the vibration behavior of the gearbox consequently.
基金financial support provided by the National Key Research and Development Project of China(Grant No.2022YFB3402901)the National Natural Science Foundation of China(Grant No.52305070,52302467)。
文摘High-speed trains typically utilize helical gear transmissions,which significantly impact the bearing load capacity and fatigue service performance of the gearbox bearings.This paper focuses on the gearbox bearings,establishing dynamic models for both helical gear and herringbone gear transmissions in high-speed trains.The modeling particularly emphasizes the precision of the bearings at the gearbox's pinion and gear wheels.Using this model,a comparative analysis is conducted on the bearing loads and contact stresses of the gearbox bearings under uniform-speed operation between the two gear transmissions.The findings reveal that the helical gear transmission generates axial forces leading to severe load imbalance on the bearings at both sides of the large gear,and this imbalance intensifies with the increase in train speed.Consequently,this results in a significant increase in contact stress on the bearings on one side.The adoption of herringbone gear transmission effectively suppresses axial forces,resolving the load imbalance issue and substantially reducing the contact stress on the originally biased side of the bearings.The study demonstrates that employing herringbone gear transmission can significantly enhance the service performance of high-speed train gearbox bearings,thereby extending their service life.
基金sponsored by the National Natural Science Foundation of China(Grant#52375115)Shanghai Rising-Star Program(Grant#22YF1450500)Fundamental Research Funds for the Central Universities.Reviewers’and the editor’s efforts are also much appreciated.
文摘The railway vehicle gearbox is an important part of the railway vehicle traction transmission system which ensures the smooth running of railway vehicles.However,as the running speed of railway vehicles continues to increase,the railway vehicle gearbox is exposed to a more demanding operating environment.Under both internal and external excitations,the gearbox is prone to faults such as fatigue cracks,and broken teeth.It is crucial to detect these faults before they result in severe failures and accidents.Therefore,understanding the dynamics and fault diagnosis of railway vehicle gearbox is needed.At present,there is a lack of systematic review of railway vehicle gearbox dynamics and fault diagnosis.So,this paper systematically summarizes the research progress on railway vehicle gearbox dynamics and fault diagnosis.To this end,this paper first summarizes the latest research progress on the dynamics of railway vehicle gearboxes.The dynamics and vibration characteristics of the gearbox are summarized under internal and external excitations,as well as faulty conditions.Then,the stateof-the-art signal processing and artificial intelligence methods for fault diagnosis of railway vehicle gearboxes are reviewed.In the end,future research prospects are given.
基金This research was supported by the Joint Funds of the National Natural Science Foundation of China(Grant No.U1834202).
文摘The load spectrum is a crucial factor for assess-ing the fatigue reliability of in-service rolling element bear-ings in transmission systems.For a bearing in a high-speed train gearbox,a measurement technique based on strain detection of bearing outer ring was used to instrument the bearing and determine the time histories of the distributed load in the bearing under different gear meshing conditions.Accordingly,the load spectrum of the total radial load car-ried by the bearing was compiled.The mean value and class interval of the obtained load spectrum were found to vary non-monotonously with the speed and torque of gear mesh-ing,which was considered to be caused by the vibration of the shaft and the bearing cage.As the realistic service load input of bearing life assessment,the measured load spectrum under different gear meshing conditions can be used to pre-dict gearbox bearing life realistically based on the damage-equivalent principle and actual operating conditions.
基金supported by National Key R&D Program of China (No.2022YFB3303600)the Fundamental Research Funds for the Central Universities (No.2022CDJKYJH048).
文摘Gearbox is a key part in machinery,in which gear,shaft and bearing operate together to transmit motion and power.The wide usage and high failure rate of gearbox make it attract much attention on its health monitoring and fault diagnosis.Dynamic modelling can study the mechanism under different faults and provide theoretical foundation for fault detection.However,current commonly used gear dynamic model usually neglects the influence of bearing and shaft,resulting in incomplete understanding of gearbox fault diagnosis especially under the effect of local defects on gear and shaft.To address this problem,an improved gear-shaft-bearing-housing dynamic model is proposed to reveal the vibration mechanism and responses considering shaft whirling and gear local defects.Firstly,an eighteen degree-of-freedom gearbox dynamic model is proposed,taking into account the interaction among gear,bearing and shaft.Secondly,the dynamic model is iteratively solved.Then,vibration responses are expounded and analysed considering gear spalling and shaft crack.Numerical results show that the gear mesh frequency and its harmonics have higher amplitude through the spectrum.Vibration RMS and the shaft rotating frequency increase with the spalling size and shaft crack angle in general.An experiment is designed to verify the rationality of the proposed gearbox model.Lastly,comprehensive analysis under different spalling size and shaft crack angle are analysed.Results show that when spalling size and crack angle are larger,RMS and the amplitude of shaft rotating frequency will not increase linearly.The dynamic model can accurately simulate the vibration of gear transmission system,which is helpful for gearbox fault diagnosis.
基金the National Natural Science Foundation of China(52275080)。
文摘Wind turbine planetary gearboxes usually work under time-varying conditions,leading to nonstationary vibration signals.These signals often consist of multiple time-varying components with close instantaneous frequencies.Therefore,high-quality time-frequency analysis(TFA)is needed to extract the time-frequency feature from such nonstationary signals for fault diagnosis.However,it is difficult to obtain high-quality timefrequency representations(TFRs)through conventional TFA methods due to low resolution and time-frequency blurs.To address this issue,we propose a new TFA method termed the proportion-extracting synchrosqueezing chirplet transform(PESCT).Firstly,the proportion-extracting chirplet transform is employed to generate highresolution underlying TFRs.Then,the energy concentration of the underlying TFRs is enhanced via the synchrosqueezing transform.Finally,wind turbine planetary gearbox fault can be diagnosed by analysis of the dominant time-varying components revealed by the concentrated TFRs with high resolution.The proposed PESCT is suitable for achieving high-quality TFRs for complicated nonstationary signals.Numerical and experimental analyses validate the effectiveness of the PESCT in characterizing the nonstationary signals from wind turbine planetary gearboxes.
基金Supported by the German Research Foundation e.V. (DFG).The presented results are based on the research project STA1198/14-1。
文摘Lubricating greases are widely used in e.g.open gear drives and gearboxes with difficult sealing conditions.The efficiency and heat balance of grease-lubricated gearboxes depend strongly on the lubrication mechanisms channeling and circulating,for which the grease flow is causal.The computational fluid dynamics opens up the possibility to visualize and understand the grease flow in gearboxes in more detail.In this study,a single-stage gearbox lubricated with an NLGI 1-2 grease was modeled by the finite-volume method to numerically investigate the fluid flow.Results show that the rotating gears influence the grease sump only locally around the gears.For a low grease fill volume,the rotation of the gears is widely separated from the grease sump.For a high grease fill volume,a pronounced geargrease interaction results in a circulating grease flow around the gears.The simulated grease distributions show good accordance with high-speed camera recordings.
基金This work was supported by the National Natural Science Foundation of China(52275130)the National Key Research and Development Program of China(2018YFB1702400).
文摘Effective fault diagnosis of planetary gearboxes is critical for ensuring the safety and dependability of mechanical drive systems.Nevertheless,variable conditions and inadequate fault data bring huge challenges to its practical fault diagnosis.Taking this into account,this study presents a new intelligent fault diagnosis(IFD)approach for planetary gearbox using a transferable deep Q network(TDQN)that merges deep reinforcement learning(DRL)and transfer learning(TL).First,a DRL environment simulation is designed by a predefined classification Markov decision process.Then,leveraging varied-size convolutions and residual learning,a multiscale residual convolutional neural network agent for TDQN is created to automatically learn meaningful features directly from vibration signals while avoiding model degradation.Next,a large source dataset is obtained from complex conditions,and this agent learns an IFD policy via autonomous interaction with the data environment.Finally,a parameter-based TL strategy is adopted to retrain the model on target datasets with variable conditions and small training data,which is conducted by fine-tuning the model parameters gained from the source task to accomplish target tasks.The results show that this TDQN outperforms not only state-of-the-art methods in a source task with an accuracy of 98.53%but also in two target tasks with 99.63%and 98.37%,respectively.
文摘The goal of this research is to look at multi-target optimization of a two-stage helical gearbox in order to determine the best key design elements for reducing gearbox height and enhancing gearbox efficiency.To do this,the method known as Taguchi and GRA(Grey Relation Analysis)were used in two stages to address the problem.The single-objective optimization problem was addressed first to close the gap between variable levels,and then the multi-objective optimization problem was solved to determine the best primary design variables.The first and second stage CWFWs(Coefficients of Wheel Face Width),ACS(Permissible Contact Stresses),and first stage gear ratio were also calculated.The study’s findings were utilized to identify the best values for five critical design aspects of a two-stage helical gearbox.
基金supported by the National Natural Science Foundation of China (Grant No.U61273205).
文摘Purpose-This study aims to ensure the operation safety of high speed trains,it is necessary to carry out nondestructive monitoring of the tensile damage of the gearbox housing material in rail time,yet the traditional tests of mechanical property can hardly meet this requirement.Design/methodology/approach-In this study the acoustic emission(AE)technology is applied in the tensile tests of the gearbox housing material of an high-speed rail(HSR)train,during which the acoustic signatures are acquired for parameter analysis.Afterward,the support vector machine(SVM)classifier is introduced to identify and classify the characteristic parameters extracted,on which basis the SVM is improved and the weighted support vector machine(WSVM)method is applied to effectively reduce the misidentification of the SVM classifier.Through the study of the law of relations between the characteristic values and the tensile life,a degradation model of the gearbox housing material amid tensile is built.Findings-The results show that the growth rate of the logarithmic hit count of AE signals and that of logarithmic amplitude can well characterize the stage of the material tensile process,and the WSVM method can improve the classification accuracy of the imbalanced data to above 94%.The degradation model built can identify the damage occurred to the HSR gearbox housing material amid the tensile process and predict the service life remains.Originality/value-The results of this study provide new concepts for the life prediction of tensile samples,and more further tests should be conducted to verify the conclusion of this research.