Urban planning decision-making is an activity for the decision-makers to collect information, judge function of cities, select project and make policy which is ainaed at the problem of urban planning that have taken p...Urban planning decision-making is an activity for the decision-makers to collect information, judge function of cities, select project and make policy which is ainaed at the problem of urban planning that have taken place, is taking place and will take place. Using historical review and comparative analysis, the articles summarizes planning decision-makings of Shanwei city and it's problem, and makes some suggestions to urban planning decision-making system of Shanwei city in the new period.展开更多
Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning frame...Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning framework for autonomous driving based on a hybrid data-and model-driven method.First,a data-driven decision-making module based on deep reinforcement learning(DRL)is developed to pursue a rational driving performance as much as possible.Then,model predictive control(MPC)is employed to execute both longitudinal and lateral motion planning tasks.Multiple constraints are defined according to the vehicle’s physical limit to meet the driving task requirements.Finally,two principles of safety and rationality for the self-evolution of autonomous driving are proposed.A motion envelope is established and embedded into a rational exploration and exploitation scheme,which filters out unreasonable experiences by masking unsafe actions so as to collect high-quality training data for the DRL agent.Experiments with a high-fidelity vehicle model and MATLAB/Simulink co-simulation environment are conducted,and the results show that the proposed online-evolution framework is able to generate safer,more rational,and more efficient driving action in a real-world environment.展开更多
Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty,evaluating educational institutions can be difficult.The concept of a possibility Pythagorean fuzzy hypersoft set(pP...Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty,evaluating educational institutions can be difficult.The concept of a possibility Pythagorean fuzzy hypersoft set(pPyFHSS)is more flexible in this regard than other theoretical fuzzy set-like models,even though some attempts have been made in the literature to address such uncertainties.This study investigates the elementary notions of pPyFHSS including its set-theoretic operations union,intersection,complement,OR-and AND-operations.Some results related to these operations are also modified for pPyFHSS.Additionally,the similarity measures between pPyFHSSs are formulated with the assistance of numerical examples and results.Lastly,an intelligent decision-assisted mechanism is developed with the proposal of a robust algorithm based on similarity measures for solving multi-attribute decision-making(MADM)problems.A case study that helps the decision-makers assess the best educational institution is discussed to validate the suggested system.The algorithmic results are compared with the most pertinent model to evaluate the adaptability of pPyFHSS,as it generalizes the classical possibility fuzzy set-like theoretical models.Similarly,while considering significant evaluating factors,the flexibility of pPyFHSS is observed through structural comparison.展开更多
Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective to...Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective tools to address these challenges.In this paper,new mathematical approaches for handling uncertainty in medical diagnosis are introduced using q-rung orthopair fuzzy sets(q-ROFS)and interval-valued q-rung orthopair fuzzy sets(IVq-ROFS).Three aggregation operators are proposed in our methodologies:the q-ROF weighted averaging(q-ROFWA),the q-ROF weighted geometric(q-ROFWG),and the q-ROF weighted neutrality averaging(qROFWNA),which enhance decision-making under uncertainty.These operators are paired with ranking methods such as the similarity measure,score function,and inverse score function to improve the accuracy of disease identification.Additionally,the impact of varying q-rung values is explored through a sensitivity analysis,extending the analysis beyond the typical maximum value of 3.The Basic Uncertain Information(BUI)method is employed to simulate expert opinions,and aggregation operators are used to combine these opinions in a group decisionmaking context.Our results provide a comprehensive comparison of methodologies,highlighting their strengths and limitations in diagnosing diseases based on uncertain patient data.展开更多
The importance and complexity of prioritizing construction projects (PCP) in urban road network planning lead to the necessity to develop an aided decision making program (ADMP). Cost benefit ratio model and stage rol...The importance and complexity of prioritizing construction projects (PCP) in urban road network planning lead to the necessity to develop an aided decision making program (ADMP). Cost benefit ratio model and stage rolled method are chosen as the theoretical foundations of the program, and then benefit model is improved to accord with the actuality of urban traffic in China. Consequently, program flows, module functions and data structures are designed, and particularly an original data structure of road ...展开更多
BACKGROUND Understanding a patient's clinical status and setting priorities for their care are two aspects of the constantly changing process of clinical decision-making.One analytical technique that can be helpfu...BACKGROUND Understanding a patient's clinical status and setting priorities for their care are two aspects of the constantly changing process of clinical decision-making.One analytical technique that can be helpful in uncertain situations is clinical judgment.Clinicians must deal with contradictory information,lack of time to make decisions,and long-term factors when emergencies occur.AIM To examine the ethical issues healthcare professionals faced during the coronavirus disease 2019(COVID-19)pandemic and the factors affecting clinical decision-making.METHODS This pilot study,which means it was a preliminary investigation to gather information and test the feasibility of a larger investigation was conducted over 6 months and we invited responses from clinicians worldwide who managed patients with COVID-19.The survey focused on topics related to their professional roles and personal relationships.We examined five core areas influencing critical care decision-making:Patients'personal factors,family-related factors,informed consent,communication and media,and hospital administrative policies on clinical decision-making.The collected data were analyzed using theχ2 test for categorical variables.RESULTS A total of 102 clinicians from 23 specialties and 17 countries responded to the survey.Age was a significant factor in treatment planning(n=88)and ventilator access(n=78).Sex had no bearing on how decisions were made.Most doctors reported maintaining patient confidentiality regarding privacy and informed consent.Approximately 50%of clinicians reported a moderate influence of clinical work,with many citing it as one of the most important factors affecting their health and relationships.Clinicians from developing countries had a significantly higher score for considering a patient's financial status when creating a treatment plan than their counterparts from developed countries.Regarding personal experiences,some respondents noted that treatment plans and preferences changed from wave to wave,and that there was a rapid turnover of studies and evidence.Hospital and government policies also played a role in critical decision-making.Rather than assessing the appropriateness of treatment,some doctors observed that hospital policies regarding medications were driven by patient demand.CONCLUSION Factors other than medical considerations frequently affect management choices.The disparity in treatment choices,became more apparent during the pandemic.We highlight the difficulties and contradictions between moral standards and the realities physicians encountered during this medical emergency.False information,large patient populations,and limited resources caused problems for clinicians.These factors impacted decision-making,which,in turn,affected patient care and healthcare staff well-being.展开更多
The critical role of patient-reported outcome measures(PROMs)in enhancing clinical decision-making and promoting patient-centered care has gained a profound significance in scientific research.PROMs encapsulate a pati...The critical role of patient-reported outcome measures(PROMs)in enhancing clinical decision-making and promoting patient-centered care has gained a profound significance in scientific research.PROMs encapsulate a patient's health status directly from their perspective,encompassing various domains such as symptom severity,functional status,and overall quality of life.By integrating PROMs into routine clinical practice and research,healthcare providers can achieve a more nuanced understanding of patient experiences and tailor treatments accordingly.The deployment of PROMs supports dynamic patient-provider interactions,fostering better patient engagement and adherence to tre-atment plans.Moreover,PROMs are pivotal in clinical settings for monitoring disease progression and treatment efficacy,particularly in chronic and mental health conditions.However,challenges in implementing PROMs include data collection and management,integration into existing health systems,and acceptance by patients and providers.Overcoming these barriers necessitates technological advancements,policy development,and continuous education to enhance the acceptability and effectiveness of PROMs.The paper concludes with recommendations for future research and policy-making aimed at optimizing the use and impact of PROMs across healthcare settings.展开更多
Planning and decision-making technology at intersections is a comprehensive research problem in intelligent transportation systems due to the uncertainties caused by a variety of traffic participants.As wireless commu...Planning and decision-making technology at intersections is a comprehensive research problem in intelligent transportation systems due to the uncertainties caused by a variety of traffic participants.As wireless communication advances,vehicle infrastructure integrated algorithms designed for intersection planning and decision-making have received increasing attention.In this paper,the recent studies on the planning and decision-making technologies at intersections are primarily overviewed.The general planning and decision-making approaches are presented,which include graph-based approach,prediction base approach,optimization-based approach and machine learning based approach.Since connected autonomous vehicles(CAVs)is the future direction for the automated driving area,we summarized the evolving planning and decision-making methods based on vehicle infrastructure cooperative technologies.Both four-way signalized and unsignalized intersection(s)are investigated under purely automated driving traffic and mixed traffic.The study benefit from current strategies,protocols,and simulation tools to help researchers identify the presented approaches’challenges and determine the research gaps,and several remaining possible research problems that need to be solved in the future.展开更多
To improve the safety and driving stability of the autonomous heavy truck, it is necessary to consider the differences of driving behavior and drivable trajectories between the heavy trucks and passenger cars. This st...To improve the safety and driving stability of the autonomous heavy truck, it is necessary to consider the differences of driving behavior and drivable trajectories between the heavy trucks and passenger cars. This study proposes a probabilistic decision-making and trajectory planning framework for the autonomous heavy trucks. Firstly, the driving decision process is divided into intention generation and feasibility evaluations, which are realized using the utility theory and risk assessment, respectively. Subsequently the driving decision is made and sent to the trajectory planning module. In order to reflect the greater risks of the truck to other surrounding vehicles, the aggressiveness index(AI) is proposed and quantified to infer the asymmetrical risk level of lane-change maneuver. In the planning stage, the lateral and roll dynamics stability domains are developed as the constraints to exclude the candidate trajectories that would cause vehicle instability. Finally, the simulation results are compared between the proposed model and the artificial potential filed model in the scenarios extracted from the naturalistic driving data. It is shown that the proposed framework can provide the human-like lane-change decisions and truck-friendly trajectories, and performs well in dynamic driving environments.展开更多
Community participation and community based management are topical themes in current policy and discussion revolving around decision-making processes especially those dealing with natural resources management.This rev...Community participation and community based management are topical themes in current policy and discussion revolving around decision-making processes especially those dealing with natural resources management.This review shows that while governments have accepted the need to either cede or devolve control and management of natural resources to the local communities,the communities are not part and parcel of the planning and budgeting which are crucial in decisionmaking.Communities were seen to be more involved in the implementation of natural resource management programs but lacked ownership of the projects.This causes lack of commitment to the programs and at times hostile reaction from the communities.The communities are always at the receiving end when it pertains to losses in the exchange.Community participation was shown to be effective when the local population is involved not as co-operating users but as natural resource managers or owner managers.展开更多
A distributed blackboard decision-making framework for collaborative planning based on nested genetic algorithm (NGA) is proposed. By using blackboard-based communication paradigm and shared data structure, multiple...A distributed blackboard decision-making framework for collaborative planning based on nested genetic algorithm (NGA) is proposed. By using blackboard-based communication paradigm and shared data structure, multiple decision-makers (DMs) can collaboratively solve the tasks-platforms allocation scheduling problems dynamically through the coordinator. This methodo- logy combined with NGA maximizes tasks execution accuracy, also minimizes the weighted total workload of the DM which is measured in terms of intra-DM and inter-DM coordination. The intra-DM employs an optimization-based scheduling algorithm to match the tasks-platforms assignment request with its own platforms. The inter-DM coordinates the exchange of collaborative request information and platforms among DMs using the blackboard architecture. The numerical result shows that the proposed black- board DM framework based on NGA can obtain a near-optimal solution for the tasks-platforms collaborative planning problem. The assignment of platforms-tasks and the patterns of coordination can achieve a nice trade-off between intra-DM and inter-DM coordination workload.展开更多
A new fuzzification method for multi-objective decision-making and selective sorting is proposed on the basis of the fuzzy consistent relation, and the specific algorithm is presented. The method is applied to the eva...A new fuzzification method for multi-objective decision-making and selective sorting is proposed on the basis of the fuzzy consistent relation, and the specific algorithm is presented. The method is applied to the evaluation of highway planning of Zhanjiang city. To decrease the subjectivity in the process of decision-making, the LOWA operator is introduced, and a discussion on how to select appropriate weights involved in multi-objective sorting is made. It is concluded that it is feasible to apply the fuzzy consistent relation to multi-objective decision-making analysis, and the improved fuzzication method is workable.展开更多
An important environmental issue related to planning is created by the political orientation of the government in Turkey.Especially in the new millennium,the government has focused on achieving economic growth and avo...An important environmental issue related to planning is created by the political orientation of the government in Turkey.Especially in the new millennium,the government has focused on achieving economic growth and avoiding the global economic crises as its primary targets.These priorities resulted in efficiency-oriented planning policies in which the metropolitan city of Istanbul is the main field of operation because of its capacity to become a regional centre of finance in the global economy.In this respect,Istanbul is regarded to have the capacity of fuelling the economic boost because of its historic,strategic and environmental assets.The city has become a dynamic bundle of urban operations.Existing public areas such as parks,forests,seashores are subjected to land development;renewal projects transform deteriorated poor neighbourhoods into high income neighbourhoods or inner-city attractions for tourism or globally marketed business areas with high quality offices.Vacant land which is reserved as potential green space for new developments in the plan is given new functions with high densities.This paper attempts to present how local government is pursuing these ends and legitimizing its means by abusing the earthquake risks,and how planning regulations are bent in order to pave the road for foreign and domestic capital.These actions are discussed in relation to the typology of planning approaches and the question of resilience.展开更多
Accurate trajectory prediction of surrounding road users is the fundamental input for motion planning,which enables safe autonomous driving on public roads.In this paper,a safe motion planning approach is proposed bas...Accurate trajectory prediction of surrounding road users is the fundamental input for motion planning,which enables safe autonomous driving on public roads.In this paper,a safe motion planning approach is proposed based on the deep learning-based trajectory prediction method.To begin with,a trajectory prediction model is established based on the graph neural network(GNN)that is trained utilizing the INTERACTION dataset.Then,the validated trajectory prediction model is used to predict the future trajectories of surrounding road users,including pedestrians and vehicles.In addition,a GNN prediction model-enabled motion planner is developed based on the model predictive control technique.Furthermore,two driving scenarios are extracted from the INTERACTION dataset to validate and evaluate the effectiveness of the proposed motion planning approach,i.e.,merging and roundabout scenarios.The results demonstrate that the proposed method can lower the risk and improve driving safety compared with the baseline method.展开更多
Unmanned autonomous helicopter(UAH)path planning problem is an important component of the UAH mission planning system.Aiming to reduce the influence of non-complete ground threat information on UAH path planning,a gro...Unmanned autonomous helicopter(UAH)path planning problem is an important component of the UAH mission planning system.Aiming to reduce the influence of non-complete ground threat information on UAH path planning,a ground threat prediction-based path planning method is proposed based on artificial bee colony(ABC)algorithm by collaborative thinking strategy.Firstly,a dynamic threat distribution probability model is developed based on the characteristics of typical ground threats.The dynamic no-fly zone of the UAH is simulated and established by calculating the distribution probability of ground threats in real time.Then,a dynamic path planning method for UAH is designed in complex environment based on the real-time prediction of ground threats.By adding the collision warning mechanism to the path planning model,the flight path could be dynamically adjusted according to changing no-fly zones.Furthermore,a hybrid enhanced ABC algorithm is proposed based on collaborative thinking strategy.The proposed algorithm applies the leader-member thinking mechanism to guide the direction of population evolution,and reduces the negative impact of local optimal solutions caused by collaborative learning update strategy,which makes the optimization performance of ABC algorithm more controllable and efficient.Finally,simulation results verify the feasibility and effectiveness of the proposed ground threat prediction path planning method.展开更多
In military service joint operations, when there are more operational forces, more multifarious materials are consumed, the support is more complex and fuzzy, the deployment of personnel is more rapid, and the support...In military service joint operations, when there are more operational forces, more multifarious materials are consumed, the support is more complex and fuzzy, the deployment of personnel is more rapid, and the support provided by wartime military material support powers can be more effective. When the principles,requirements, influencing factors and goals of military material support forces are deployed in wartime, an evaluation indicator system is established. Thus, a new combined empowerment method based on an analytic hierarchy process(AHP) is developed to calculate the subjective weights, and the rough entropy method is used to calculate the objective weights. Combination weights can be obtained by calculating the weight preference coefficient error, which is determined by combining the cooperative game method and the minimum deviation into objectives. This approach can determine the grey relation projection coefficient and synthesize the measure scheme superiority to finally optimize the deployment plan using the grey relation projection decision-making method. The results show that the method is feasible and effective;it can provide a more scientific and practical decision-making basis for the military material support power deployment in wartime.展开更多
Owing to the far-reaching environmental consequences of agriculture and food systems,such as their contribution to climate change,there is an urgent need to reduce their impact.International and national governments s...Owing to the far-reaching environmental consequences of agriculture and food systems,such as their contribution to climate change,there is an urgent need to reduce their impact.International and national governments set sustainability targets and implement corresponding measures.Nevertheless,critics of the globalized system claim that a territorial administrative scale is better suited to address sustainability issues.Yet,at the subnational level,local authorities rarely apply a systemic environmental assessment to enhance their action plans.This paper employs a territorial life cycle assessment methodology to improve local environmental agri-food planning.The objective is to identify significant direct and indirect environmental hotspots,their origins,and formulate effective mitigation strategies.The methodology is applied to the administrative department of Finistere,a strategic agricultural region in North-Western France.Multiple environmental criteria including climate change,fossil resource scarcity,toxicity,and land use are modeled.The findings reveal that the primary environmental hotspots of the studied local food system arise from indirect sources,such as livestock feed or diesel consumption.Livestock reduction and organic farming conversion emerge as the most environmentally efficient strategies,resulting in a 25%decrease in the climate change indicator.However,the overall modeled impact reduction is insufficient following national objectives and remains limited for the land use indicator.These results highlight the innovative application of life cycle assessment led at a local level,offering insights for the further advancement of systematic and prospective local agri-food assessment.Additionally,they provide guidance for local authorities to enhance the sustainability of planning strategies.展开更多
While autonomous vehicles are vital components of intelligent transportation systems,ensuring the trustworthiness of decision-making remains a substantial challenge in realizing autonomous driving.Therefore,we present...While autonomous vehicles are vital components of intelligent transportation systems,ensuring the trustworthiness of decision-making remains a substantial challenge in realizing autonomous driving.Therefore,we present a novel robust reinforcement learning approach with safety guarantees to attain trustworthy decision-making for autonomous vehicles.The proposed technique ensures decision trustworthiness in terms of policy robustness and collision safety.Specifically,an adversary model is learned online to simulate the worst-case uncertainty by approximating the optimal adversarial perturbations on the observed states and environmental dynamics.In addition,an adversarial robust actor-critic algorithm is developed to enable the agent to learn robust policies against perturbations in observations and dynamics.Moreover,we devise a safety mask to guarantee the collision safety of the autonomous driving agent during both the training and testing processes using an interpretable knowledge model known as the Responsibility-Sensitive Safety Model.Finally,the proposed approach is evaluated through both simulations and experiments.These results indicate that the autonomous driving agent can make trustworthy decisions and drastically reduce the number of collisions through robust safety policies.展开更多
In community planning,due to the lack of evidence regarding the selection of media tools,this study examines how a common but differentiated ideal speech situation can be created as well as how more appropriate media ...In community planning,due to the lack of evidence regarding the selection of media tools,this study examines how a common but differentiated ideal speech situation can be created as well as how more appropriate media tools can be defined and selected in the community planning process.First,this study describes the concept and theoretical basis of media used in community planning from the perspectives of the multiple effects of media evolution on communicative planning.Second,the classification criteria and typical characteristics of media tools used to support community planning are clarified from three dimensions:acceptability,cost effectiveness,and applicability.Third,strategies for applying media tools in the four phases of communicative planning-namely,state analysis,problem identification,contradictory solution and optimization-are described.Finally,trends in the development of media tools for community planning are explored in terms of multistakeholder engagement,supporting scientific decision-making and multiple-type media integration.The results provide a reference for developing more inclusive,effective,and appropriate media tools for enhancing decision-making capacity and modernizing governance in community planning and policy-making processes.展开更多
Due to ever-growing soccer data collection approaches and progressing artificial intelligence(AI) methods, soccer analysis, evaluation, and decision-making have received increasing interest from not only the professio...Due to ever-growing soccer data collection approaches and progressing artificial intelligence(AI) methods, soccer analysis, evaluation, and decision-making have received increasing interest from not only the professional sports analytics realm but also the academic AI research community. AI brings gamechanging approaches for soccer analytics where soccer has been a typical benchmark for AI research. The combination has been an emerging topic. In this paper, soccer match analytics are taken as a complete observation-orientation-decision-action(OODA) loop.In addition, as in AI frameworks such as that for reinforcement learning, interacting with a virtual environment enables an evolving model. Therefore, both soccer analytics in the real world and virtual domains are discussed. With the intersection of the OODA loop and the real-virtual domains, available soccer data, including event and tracking data, and diverse orientation and decisionmaking models for both real-world and virtual soccer matches are comprehensively reviewed. Finally, some promising directions in this interdisciplinary area are pointed out. It is claimed that paradigms for both professional sports analytics and AI research could be combined. Moreover, it is quite promising to bridge the gap between the real and virtual domains for soccer match analysis and decision-making.展开更多
基金Acknowledgments The authors gratefully acknowledge the financial support provided by Foundation for Distinguished Young Talents in Higher Education of Guangdong, China (Project No: wyrnl1049) and the Natural Natural Science Foundation of China (Project No. 40901066).
文摘Urban planning decision-making is an activity for the decision-makers to collect information, judge function of cities, select project and make policy which is ainaed at the problem of urban planning that have taken place, is taking place and will take place. Using historical review and comparative analysis, the articles summarizes planning decision-makings of Shanwei city and it's problem, and makes some suggestions to urban planning decision-making system of Shanwei city in the new period.
基金the financial support of the National Key Research and Development Program of China(2020AAA0108100)the Shanghai Municipal Science and Technology Major Project(2021SHZDZX0100)the Shanghai Gaofeng and Gaoyuan Project for University Academic Program Development for funding。
文摘Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning framework for autonomous driving based on a hybrid data-and model-driven method.First,a data-driven decision-making module based on deep reinforcement learning(DRL)is developed to pursue a rational driving performance as much as possible.Then,model predictive control(MPC)is employed to execute both longitudinal and lateral motion planning tasks.Multiple constraints are defined according to the vehicle’s physical limit to meet the driving task requirements.Finally,two principles of safety and rationality for the self-evolution of autonomous driving are proposed.A motion envelope is established and embedded into a rational exploration and exploitation scheme,which filters out unreasonable experiences by masking unsafe actions so as to collect high-quality training data for the DRL agent.Experiments with a high-fidelity vehicle model and MATLAB/Simulink co-simulation environment are conducted,and the results show that the proposed online-evolution framework is able to generate safer,more rational,and more efficient driving action in a real-world environment.
基金supported by the Deanship of Graduate Studies and Scientific Research at Qassim University(QU-APC-2024-9/1).
文摘Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty,evaluating educational institutions can be difficult.The concept of a possibility Pythagorean fuzzy hypersoft set(pPyFHSS)is more flexible in this regard than other theoretical fuzzy set-like models,even though some attempts have been made in the literature to address such uncertainties.This study investigates the elementary notions of pPyFHSS including its set-theoretic operations union,intersection,complement,OR-and AND-operations.Some results related to these operations are also modified for pPyFHSS.Additionally,the similarity measures between pPyFHSSs are formulated with the assistance of numerical examples and results.Lastly,an intelligent decision-assisted mechanism is developed with the proposal of a robust algorithm based on similarity measures for solving multi-attribute decision-making(MADM)problems.A case study that helps the decision-makers assess the best educational institution is discussed to validate the suggested system.The algorithmic results are compared with the most pertinent model to evaluate the adaptability of pPyFHSS,as it generalizes the classical possibility fuzzy set-like theoretical models.Similarly,while considering significant evaluating factors,the flexibility of pPyFHSS is observed through structural comparison.
文摘Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective tools to address these challenges.In this paper,new mathematical approaches for handling uncertainty in medical diagnosis are introduced using q-rung orthopair fuzzy sets(q-ROFS)and interval-valued q-rung orthopair fuzzy sets(IVq-ROFS).Three aggregation operators are proposed in our methodologies:the q-ROF weighted averaging(q-ROFWA),the q-ROF weighted geometric(q-ROFWG),and the q-ROF weighted neutrality averaging(qROFWNA),which enhance decision-making under uncertainty.These operators are paired with ranking methods such as the similarity measure,score function,and inverse score function to improve the accuracy of disease identification.Additionally,the impact of varying q-rung values is explored through a sensitivity analysis,extending the analysis beyond the typical maximum value of 3.The Basic Uncertain Information(BUI)method is employed to simulate expert opinions,and aggregation operators are used to combine these opinions in a group decisionmaking context.Our results provide a comprehensive comparison of methodologies,highlighting their strengths and limitations in diagnosing diseases based on uncertain patient data.
文摘The importance and complexity of prioritizing construction projects (PCP) in urban road network planning lead to the necessity to develop an aided decision making program (ADMP). Cost benefit ratio model and stage rolled method are chosen as the theoretical foundations of the program, and then benefit model is improved to accord with the actuality of urban traffic in China. Consequently, program flows, module functions and data structures are designed, and particularly an original data structure of road ...
文摘BACKGROUND Understanding a patient's clinical status and setting priorities for their care are two aspects of the constantly changing process of clinical decision-making.One analytical technique that can be helpful in uncertain situations is clinical judgment.Clinicians must deal with contradictory information,lack of time to make decisions,and long-term factors when emergencies occur.AIM To examine the ethical issues healthcare professionals faced during the coronavirus disease 2019(COVID-19)pandemic and the factors affecting clinical decision-making.METHODS This pilot study,which means it was a preliminary investigation to gather information and test the feasibility of a larger investigation was conducted over 6 months and we invited responses from clinicians worldwide who managed patients with COVID-19.The survey focused on topics related to their professional roles and personal relationships.We examined five core areas influencing critical care decision-making:Patients'personal factors,family-related factors,informed consent,communication and media,and hospital administrative policies on clinical decision-making.The collected data were analyzed using theχ2 test for categorical variables.RESULTS A total of 102 clinicians from 23 specialties and 17 countries responded to the survey.Age was a significant factor in treatment planning(n=88)and ventilator access(n=78).Sex had no bearing on how decisions were made.Most doctors reported maintaining patient confidentiality regarding privacy and informed consent.Approximately 50%of clinicians reported a moderate influence of clinical work,with many citing it as one of the most important factors affecting their health and relationships.Clinicians from developing countries had a significantly higher score for considering a patient's financial status when creating a treatment plan than their counterparts from developed countries.Regarding personal experiences,some respondents noted that treatment plans and preferences changed from wave to wave,and that there was a rapid turnover of studies and evidence.Hospital and government policies also played a role in critical decision-making.Rather than assessing the appropriateness of treatment,some doctors observed that hospital policies regarding medications were driven by patient demand.CONCLUSION Factors other than medical considerations frequently affect management choices.The disparity in treatment choices,became more apparent during the pandemic.We highlight the difficulties and contradictions between moral standards and the realities physicians encountered during this medical emergency.False information,large patient populations,and limited resources caused problems for clinicians.These factors impacted decision-making,which,in turn,affected patient care and healthcare staff well-being.
文摘The critical role of patient-reported outcome measures(PROMs)in enhancing clinical decision-making and promoting patient-centered care has gained a profound significance in scientific research.PROMs encapsulate a patient's health status directly from their perspective,encompassing various domains such as symptom severity,functional status,and overall quality of life.By integrating PROMs into routine clinical practice and research,healthcare providers can achieve a more nuanced understanding of patient experiences and tailor treatments accordingly.The deployment of PROMs supports dynamic patient-provider interactions,fostering better patient engagement and adherence to tre-atment plans.Moreover,PROMs are pivotal in clinical settings for monitoring disease progression and treatment efficacy,particularly in chronic and mental health conditions.However,challenges in implementing PROMs include data collection and management,integration into existing health systems,and acceptance by patients and providers.Overcoming these barriers necessitates technological advancements,policy development,and continuous education to enhance the acceptability and effectiveness of PROMs.The paper concludes with recommendations for future research and policy-making aimed at optimizing the use and impact of PROMs across healthcare settings.
文摘Planning and decision-making technology at intersections is a comprehensive research problem in intelligent transportation systems due to the uncertainties caused by a variety of traffic participants.As wireless communication advances,vehicle infrastructure integrated algorithms designed for intersection planning and decision-making have received increasing attention.In this paper,the recent studies on the planning and decision-making technologies at intersections are primarily overviewed.The general planning and decision-making approaches are presented,which include graph-based approach,prediction base approach,optimization-based approach and machine learning based approach.Since connected autonomous vehicles(CAVs)is the future direction for the automated driving area,we summarized the evolving planning and decision-making methods based on vehicle infrastructure cooperative technologies.Both four-way signalized and unsignalized intersection(s)are investigated under purely automated driving traffic and mixed traffic.The study benefit from current strategies,protocols,and simulation tools to help researchers identify the presented approaches’challenges and determine the research gaps,and several remaining possible research problems that need to be solved in the future.
基金supported by the National Natural Science Foundation of China(5187051675)。
文摘To improve the safety and driving stability of the autonomous heavy truck, it is necessary to consider the differences of driving behavior and drivable trajectories between the heavy trucks and passenger cars. This study proposes a probabilistic decision-making and trajectory planning framework for the autonomous heavy trucks. Firstly, the driving decision process is divided into intention generation and feasibility evaluations, which are realized using the utility theory and risk assessment, respectively. Subsequently the driving decision is made and sent to the trajectory planning module. In order to reflect the greater risks of the truck to other surrounding vehicles, the aggressiveness index(AI) is proposed and quantified to infer the asymmetrical risk level of lane-change maneuver. In the planning stage, the lateral and roll dynamics stability domains are developed as the constraints to exclude the candidate trajectories that would cause vehicle instability. Finally, the simulation results are compared between the proposed model and the artificial potential filed model in the scenarios extracted from the naturalistic driving data. It is shown that the proposed framework can provide the human-like lane-change decisions and truck-friendly trajectories, and performs well in dynamic driving environments.
文摘Community participation and community based management are topical themes in current policy and discussion revolving around decision-making processes especially those dealing with natural resources management.This review shows that while governments have accepted the need to either cede or devolve control and management of natural resources to the local communities,the communities are not part and parcel of the planning and budgeting which are crucial in decisionmaking.Communities were seen to be more involved in the implementation of natural resource management programs but lacked ownership of the projects.This causes lack of commitment to the programs and at times hostile reaction from the communities.The communities are always at the receiving end when it pertains to losses in the exchange.Community participation was shown to be effective when the local population is involved not as co-operating users but as natural resource managers or owner managers.
基金supported by the National Aerospace Science Foundation of China(20138053038)the Graduate Starting Seed Fund of Northwestern Polytechnical University(Z2015111)
文摘A distributed blackboard decision-making framework for collaborative planning based on nested genetic algorithm (NGA) is proposed. By using blackboard-based communication paradigm and shared data structure, multiple decision-makers (DMs) can collaboratively solve the tasks-platforms allocation scheduling problems dynamically through the coordinator. This methodo- logy combined with NGA maximizes tasks execution accuracy, also minimizes the weighted total workload of the DM which is measured in terms of intra-DM and inter-DM coordination. The intra-DM employs an optimization-based scheduling algorithm to match the tasks-platforms assignment request with its own platforms. The inter-DM coordinates the exchange of collaborative request information and platforms among DMs using the blackboard architecture. The numerical result shows that the proposed black- board DM framework based on NGA can obtain a near-optimal solution for the tasks-platforms collaborative planning problem. The assignment of platforms-tasks and the patterns of coordination can achieve a nice trade-off between intra-DM and inter-DM coordination workload.
基金SupportedbytheNationalNaturalScienceFoundationofChina (No .60 1 340 1 0 )
文摘A new fuzzification method for multi-objective decision-making and selective sorting is proposed on the basis of the fuzzy consistent relation, and the specific algorithm is presented. The method is applied to the evaluation of highway planning of Zhanjiang city. To decrease the subjectivity in the process of decision-making, the LOWA operator is introduced, and a discussion on how to select appropriate weights involved in multi-objective sorting is made. It is concluded that it is feasible to apply the fuzzy consistent relation to multi-objective decision-making analysis, and the improved fuzzication method is workable.
文摘An important environmental issue related to planning is created by the political orientation of the government in Turkey.Especially in the new millennium,the government has focused on achieving economic growth and avoiding the global economic crises as its primary targets.These priorities resulted in efficiency-oriented planning policies in which the metropolitan city of Istanbul is the main field of operation because of its capacity to become a regional centre of finance in the global economy.In this respect,Istanbul is regarded to have the capacity of fuelling the economic boost because of its historic,strategic and environmental assets.The city has become a dynamic bundle of urban operations.Existing public areas such as parks,forests,seashores are subjected to land development;renewal projects transform deteriorated poor neighbourhoods into high income neighbourhoods or inner-city attractions for tourism or globally marketed business areas with high quality offices.Vacant land which is reserved as potential green space for new developments in the plan is given new functions with high densities.This paper attempts to present how local government is pursuing these ends and legitimizing its means by abusing the earthquake risks,and how planning regulations are bent in order to pave the road for foreign and domestic capital.These actions are discussed in relation to the typology of planning approaches and the question of resilience.
基金Supported by National Natural Science Foundation of China(Grant Nos.52222215,52072051)Chongqing Municipal Natural Science Foundation of China(Grant No.CSTB2023NSCQ-JQX0003).
文摘Accurate trajectory prediction of surrounding road users is the fundamental input for motion planning,which enables safe autonomous driving on public roads.In this paper,a safe motion planning approach is proposed based on the deep learning-based trajectory prediction method.To begin with,a trajectory prediction model is established based on the graph neural network(GNN)that is trained utilizing the INTERACTION dataset.Then,the validated trajectory prediction model is used to predict the future trajectories of surrounding road users,including pedestrians and vehicles.In addition,a GNN prediction model-enabled motion planner is developed based on the model predictive control technique.Furthermore,two driving scenarios are extracted from the INTERACTION dataset to validate and evaluate the effectiveness of the proposed motion planning approach,i.e.,merging and roundabout scenarios.The results demonstrate that the proposed method can lower the risk and improve driving safety compared with the baseline method.
文摘Unmanned autonomous helicopter(UAH)path planning problem is an important component of the UAH mission planning system.Aiming to reduce the influence of non-complete ground threat information on UAH path planning,a ground threat prediction-based path planning method is proposed based on artificial bee colony(ABC)algorithm by collaborative thinking strategy.Firstly,a dynamic threat distribution probability model is developed based on the characteristics of typical ground threats.The dynamic no-fly zone of the UAH is simulated and established by calculating the distribution probability of ground threats in real time.Then,a dynamic path planning method for UAH is designed in complex environment based on the real-time prediction of ground threats.By adding the collision warning mechanism to the path planning model,the flight path could be dynamically adjusted according to changing no-fly zones.Furthermore,a hybrid enhanced ABC algorithm is proposed based on collaborative thinking strategy.The proposed algorithm applies the leader-member thinking mechanism to guide the direction of population evolution,and reduces the negative impact of local optimal solutions caused by collaborative learning update strategy,which makes the optimization performance of ABC algorithm more controllable and efficient.Finally,simulation results verify the feasibility and effectiveness of the proposed ground threat prediction path planning method.
基金supported by the Education Science Fund of the Military Science Institute of Beijing,China(2015JY320)
文摘In military service joint operations, when there are more operational forces, more multifarious materials are consumed, the support is more complex and fuzzy, the deployment of personnel is more rapid, and the support provided by wartime military material support powers can be more effective. When the principles,requirements, influencing factors and goals of military material support forces are deployed in wartime, an evaluation indicator system is established. Thus, a new combined empowerment method based on an analytic hierarchy process(AHP) is developed to calculate the subjective weights, and the rough entropy method is used to calculate the objective weights. Combination weights can be obtained by calculating the weight preference coefficient error, which is determined by combining the cooperative game method and the minimum deviation into objectives. This approach can determine the grey relation projection coefficient and synthesize the measure scheme superiority to finally optimize the deployment plan using the grey relation projection decision-making method. The results show that the method is feasible and effective;it can provide a more scientific and practical decision-making basis for the military material support power deployment in wartime.
文摘Owing to the far-reaching environmental consequences of agriculture and food systems,such as their contribution to climate change,there is an urgent need to reduce their impact.International and national governments set sustainability targets and implement corresponding measures.Nevertheless,critics of the globalized system claim that a territorial administrative scale is better suited to address sustainability issues.Yet,at the subnational level,local authorities rarely apply a systemic environmental assessment to enhance their action plans.This paper employs a territorial life cycle assessment methodology to improve local environmental agri-food planning.The objective is to identify significant direct and indirect environmental hotspots,their origins,and formulate effective mitigation strategies.The methodology is applied to the administrative department of Finistere,a strategic agricultural region in North-Western France.Multiple environmental criteria including climate change,fossil resource scarcity,toxicity,and land use are modeled.The findings reveal that the primary environmental hotspots of the studied local food system arise from indirect sources,such as livestock feed or diesel consumption.Livestock reduction and organic farming conversion emerge as the most environmentally efficient strategies,resulting in a 25%decrease in the climate change indicator.However,the overall modeled impact reduction is insufficient following national objectives and remains limited for the land use indicator.These results highlight the innovative application of life cycle assessment led at a local level,offering insights for the further advancement of systematic and prospective local agri-food assessment.Additionally,they provide guidance for local authorities to enhance the sustainability of planning strategies.
基金supported in part by the Start-Up Grant-Nanyang Assistant Professorship Grant of Nanyang Technological Universitythe Agency for Science,Technology and Research(A*STAR)under Advanced Manufacturing and Engineering(AME)Young Individual Research under Grant(A2084c0156)+2 种基金the MTC Individual Research Grant(M22K2c0079)the ANR-NRF Joint Grant(NRF2021-NRF-ANR003 HM Science)the Ministry of Education(MOE)under the Tier 2 Grant(MOE-T2EP50222-0002)。
文摘While autonomous vehicles are vital components of intelligent transportation systems,ensuring the trustworthiness of decision-making remains a substantial challenge in realizing autonomous driving.Therefore,we present a novel robust reinforcement learning approach with safety guarantees to attain trustworthy decision-making for autonomous vehicles.The proposed technique ensures decision trustworthiness in terms of policy robustness and collision safety.Specifically,an adversary model is learned online to simulate the worst-case uncertainty by approximating the optimal adversarial perturbations on the observed states and environmental dynamics.In addition,an adversarial robust actor-critic algorithm is developed to enable the agent to learn robust policies against perturbations in observations and dynamics.Moreover,we devise a safety mask to guarantee the collision safety of the autonomous driving agent during both the training and testing processes using an interpretable knowledge model known as the Responsibility-Sensitive Safety Model.Finally,the proposed approach is evaluated through both simulations and experiments.These results indicate that the autonomous driving agent can make trustworthy decisions and drastically reduce the number of collisions through robust safety policies.
基金supported by the National Key Research and Development Program of China under the theme“Key technologies for urban sustainable development evaluation and decision-making support”[Grant No.2022YFC3802900].
文摘In community planning,due to the lack of evidence regarding the selection of media tools,this study examines how a common but differentiated ideal speech situation can be created as well as how more appropriate media tools can be defined and selected in the community planning process.First,this study describes the concept and theoretical basis of media used in community planning from the perspectives of the multiple effects of media evolution on communicative planning.Second,the classification criteria and typical characteristics of media tools used to support community planning are clarified from three dimensions:acceptability,cost effectiveness,and applicability.Third,strategies for applying media tools in the four phases of communicative planning-namely,state analysis,problem identification,contradictory solution and optimization-are described.Finally,trends in the development of media tools for community planning are explored in terms of multistakeholder engagement,supporting scientific decision-making and multiple-type media integration.The results provide a reference for developing more inclusive,effective,and appropriate media tools for enhancing decision-making capacity and modernizing governance in community planning and policy-making processes.
基金supported by the National Key Research,Development Program of China (2020AAA0103404)the Beijing Nova Program (20220484077)the National Natural Science Foundation of China (62073323)。
文摘Due to ever-growing soccer data collection approaches and progressing artificial intelligence(AI) methods, soccer analysis, evaluation, and decision-making have received increasing interest from not only the professional sports analytics realm but also the academic AI research community. AI brings gamechanging approaches for soccer analytics where soccer has been a typical benchmark for AI research. The combination has been an emerging topic. In this paper, soccer match analytics are taken as a complete observation-orientation-decision-action(OODA) loop.In addition, as in AI frameworks such as that for reinforcement learning, interacting with a virtual environment enables an evolving model. Therefore, both soccer analytics in the real world and virtual domains are discussed. With the intersection of the OODA loop and the real-virtual domains, available soccer data, including event and tracking data, and diverse orientation and decisionmaking models for both real-world and virtual soccer matches are comprehensively reviewed. Finally, some promising directions in this interdisciplinary area are pointed out. It is claimed that paradigms for both professional sports analytics and AI research could be combined. Moreover, it is quite promising to bridge the gap between the real and virtual domains for soccer match analysis and decision-making.