Hot arid zones represent vital reservoirs of unique species and ecosystems,holding significant importance for biodiversity.This study aimed to explore the plant diversity associated with tree plantations in urban ecos...Hot arid zones represent vital reservoirs of unique species and ecosystems,holding significant importance for biodiversity.This study aimed to explore the plant diversity associated with tree plantations in urban ecosystems under hyper-arid climatic conditions in the Sahara Desert of Algeria.In May 2022,30 quadrats measuring 1 m^(2) each were established at the base of Phoenix dactylifera,Leucaena leucocephala,and Tamarix aphylla,corresponding to the dominant tree species in each of three plantations.In each quadrat,the plant quantitative inventory was conducted to measure plant diversity and similarity among the studied plantations.Based on this,we assessed the plant functional traits and rarity/abundance status of the flora.The findings revealed a diverse flora associated with the studied plantations,comprising 29 plant species grouped into 27 genera and 12 families.Notably,Poaceae(accounting for 30.8% of the flora),Asteraceae(25.0%),and Zygophyllaceae(21.6%)were well-represented.With an overall density of approximately 555 individuals/m^(2),Zygophyllum album(120 individuals/m^(2))and Polypogon monspeliensis(87 individuals/m^(2))emerged as the most abundant species.Functional trait analysis underscored the pivotal role of therophytes(constituting over 50.0% of the flora)and anemochorous species(33.0%-62.5%).Phytogeographic analysis emphasized the prevalence of the Saharo-Arabic element(constituting over 31.0% of the flora)and the Mediterranean Saharo-Arabic element(9.5%-21.5%).The Cosmopolitan element thrived under disturbance factors,recording percentages from 13.0% to 20.0% of the plant community.The rarity/abundance status of the flora emphasized the significance of rare,common,and very common species in the studied plantations.These findings could provide fundamental data for the effective control and management of biodiversity in hot hyper-arid urban ecosystems.展开更多
The interactions between plants and herbivorous insects are complex and involve multiple factors,driving species formation and leading to the beginning of co-evolution and diversification of plant and insect molecules...The interactions between plants and herbivorous insects are complex and involve multiple factors,driving species formation and leading to the beginning of co-evolution and diversification of plant and insect molecules.Various molecular processes regulate the interactions between plants and herbivorous insects.Here,we discuss the molecular patterns of plant perception of herbivorous insect feeding through activation of early signaling components,crosstalk of plant defense network composed of multiple plant hormones,and various adaptive changes in insect responses to plant defenses.Both plant defenses and insect counter-defenses are molecular adaptation processes to each other.Molecular models of plant-herbivorous insect interactions can more intuitively help us to understand the co-evolutionary arms race between plants and herbivorous insects.These results will provide detailed evidence to elucidate and enrich the interaction network of plant-herbivorous insects.展开更多
This study aimed to address the challenge of accurately and reliably detecting tomatoes in dense planting environments,a critical prerequisite for the automation implementation of robotic harvesting.However,the heavy ...This study aimed to address the challenge of accurately and reliably detecting tomatoes in dense planting environments,a critical prerequisite for the automation implementation of robotic harvesting.However,the heavy reliance on extensive manually annotated datasets for training deep learning models still poses significant limitations to their application in real-world agricultural production environments.To overcome these limitations,we employed domain adaptive learning approach combined with the YOLOv5 model to develop a novel tomato detection model called as TDA-YOLO(tomato detection domain adaptation).We designated the normal illumination scenes in dense planting environments as the source domain and utilized various other illumination scenes as the target domain.To construct bridge mechanism between source and target domains,neural preset for color style transfer is introduced to generate a pseudo-dataset,which served to deal with domain discrepancy.Furthermore,this study combines the semi-supervised learning method to enable the model to extract domain-invariant features more fully,and uses knowledge distillation to improve the model's ability to adapt to the target domain.Additionally,for purpose of promoting inference speed and low computational demand,the lightweight FasterNet network was integrated into the YOLOv5's C3 module,creating a modified C3_Faster module.The experimental results demonstrated that the proposed TDA-YOLO model significantly outperformed original YOLOv5s model,achieving a mAP(mean average precision)of 96.80%for tomato detection across diverse scenarios in dense planting environments,increasing by 7.19 percentage points;Compared with the latest YOLOv8 and YOLOv9,it is also 2.17 and 1.19 percentage points higher,respectively.The model's average detection time per image was an impressive 15 milliseconds,with a FLOPs(floating point operations per second)count of 13.8 G.After acceleration processing,the detection accuracy of the TDA-YOLO model on the Jetson Xavier NX development board is 90.95%,the mAP value is 91.35%,and the detection time of each image is 21 ms,which can still meet the requirements of real-time detection of tomatoes in dense planting environment.The experimental results show that the proposed TDA-YOLO model can accurately and quickly detect tomatoes in dense planting environment,and at the same time avoid the use of a large number of annotated data,which provides technical support for the development of automatic harvesting systems for tomatoes and other fruits.展开更多
Phyllosphere microorganisms are a crucial component of environmental microorganisms,highly influenced by host characteristics,and play a significant role in plant health and productivity.Nonetheless,the impact of host...Phyllosphere microorganisms are a crucial component of environmental microorganisms,highly influenced by host characteristics,and play a significant role in plant health and productivity.Nonetheless,the impact of host characteristics on shaping phyllosphere microbial communities of plants with different life forms remains ambiguous.Utilizing high-throughput sequencing technology,this study analyzed the diversity and community composition of phyllosphere epiphytic microorganisms(e.g.,bacteria and fungi)of various plant life forms in the hinterland of the Gurbantunggut Desert,Northwest China.Functional annotation of prokaryotic taxa(FAPROTAX)and fungi function guild(FUNGuild)were employed to assess the ecological functions of microorganisms and to investigate the role of stochastic and deterministic processes in shaping phyllosphere microbial communities.Result showed a diverse array of phyllosphere epiphytic microorganisms in the desert plants,with Proteobacteria,Cyanobacteria,and Actinobacteriota dominating bacterial community,while Ascomycota and Basidiomycota were prevalent in fungal community.Comparison across different plant life forms highlighted distinct microbial communities,indicating strong filtering effects by plant characteristics.FAPROTAX prediction identified intracellular parasites(accounting for 27.44%of bacterial community abundance),chemoheterotrophy(10.12%),and phototrophy(17.41%)as the main functions of epiphytic bacteria on leaves of different life form plants.FUNGuild prediction indicated that phyllosphere epiphytic fungi primarily served as Saprotrophs(81.77%),Pathotrophs(17.41%),and Symbiotrophs(0.82%).Co-occurrence network analysis demonstrated a predominance of positive correlations among different microbial taxa.Raup-Crick dissimilarity index analysis revealed that deterministic processes predominantly influenced phyllosphere bacterial and fungal community assembly.Variance partitioning analysis and random forest modeling suggested that plant leaf functional traits significantly impacted both bacterial and fungal community composition,with fungal community composition showing a closer association with leaf nutrients and physiology compared with bacterial community composition.The distinct responses of bacterial and fungal communities to plant traits were attributed to the differing properties of bacteria and fungi,such as bacteria having higher potential dispersal rates and broader ecological niches than fungi.Overall,the results indicate that phyllosphere bacterial and fungal communities undergo similar community assembly processes,with fungi being more influenced by plant characteristics than bacteria.These findings offer novel insights into the ecology of phyllosphere microbial communities of desert plants.展开更多
Background:With the expansion of urban areas,the remnants of forested areas play a crucial role in preserving biodiversity in urban environments.This study aimed to explore the impact of spatiotemporal urban expansion...Background:With the expansion of urban areas,the remnants of forested areas play a crucial role in preserving biodiversity in urban environments.This study aimed to explore the impact of spatiotemporal urban expansion on the networks of leaf traits in woody plants within remnant forest patches,thereby enhancing our understanding of plant adaptive strategies and contributing to the conservation of urban biodiversity.Methods:Our study examined woody plants within 120 sample plots across 15 remnant forest patches in Guiyang,China.We constructed leaf trait networks (LTNs) based on 26 anatomical,structural,and compositional leaf traits and assessed the effects of the spatiotemporal dynamics of urban expansion on these LTNs.Results and conclusions:Our results indicate that shrubs within these patches have greater average path lengths and diameters than trees.With increasing urban expansion intensity,we observed a rise in the edge density of the LTN-shrubs.Additionally,modularity within the networks of shrubs decreased as road density and urban expansion intensity increased,and increases in the average path length and average clustering coefficient for shrubs were observed with a rise in the composite terrain complexity index.Notably,patches subjected to‘leapfrog’expansion exhibited greater average patch length and diameter than those experiencing edge growth.Stomatal traits were found to have high degree centrality within these networks,signifying their substantial contribution to multiple functions.In urban remnant forests,shrubs bolster their resilience to variable environmental pressures by augmenting the complexity of their leaf trait networks.展开更多
With the rapid development of modern molecular biology and bioinformatics,many studies have proved that transcription factors play an important role in regulating the growth and development of plants.SPATULA(SPT)belon...With the rapid development of modern molecular biology and bioinformatics,many studies have proved that transcription factors play an important role in regulating the growth and development of plants.SPATULA(SPT)belongs to the bHLH transcription family and participates in many processes of regulating plant growth and development.This review systemically summarizes the multiple roles of SPT in plant growth,development,and stress response,including seed germination,flowering,leaf size,carpel development,and root elongation,which is helpful for us to better understand the functions of SPT.展开更多
Discerning vulnerability differences among different aged trees to drought-driven growth decline or to mortality is critical to implement age-specific countermeasures for forest management in water-limited areas.An im...Discerning vulnerability differences among different aged trees to drought-driven growth decline or to mortality is critical to implement age-specific countermeasures for forest management in water-limited areas.An important species for afforestation in dry environments of northern China,Mongolian pine(Pinus sylvestris var.mongolica Litv.)has recently exhibited growth decline and dieback on many sites,particularly pronounced in old-growth plantations.However,changes in response to drought stress by this species with age as well as the underlying mechanisms are poorly understood.In this study,tree-ring data and remotely sensed vegetation data were combined to investigate variations in growth at individual tree and stand scales for young(9-13 years)and aging(35-52 years)plantations of Mongolian pine in a water-limited area of northern China.A recent decline in tree-ring width in the older plantation also had lower values in satellited-derived normalized difference vegetation indices and normalized difference water indices relative to the younger plantations.In addition,all measured growth-related metrics were strongly correlated with the self-calibrating Palmer drought severity index during the growing season in the older plantation.Sensitivity of growth to drought of the older plantation might be attributed to more severe hydraulic limitations,as reflected by their lower sapwood-and leaf-specific hydraulic conductivities.Our study presents a comprehensive view on changes of growth with age by integrating multiple methods and provides an explanation from the perspective of plant hydraulics for growth decline with age.The results indicate that old-growth Mongolian pine plantations in water-limited environments may face increased growth declines under the context of climate warming and drying.展开更多
Nitrogen(N)deposition is a significant aspect of global change and poses a threat to terrestrial biodiversity.The impact of plant-soil microbe relationships to N deposition has recently attracted considerable attentio...Nitrogen(N)deposition is a significant aspect of global change and poses a threat to terrestrial biodiversity.The impact of plant-soil microbe relationships to N deposition has recently attracted considerable attention.Soil microorganisms have been proven to provide nutrients for specific plant growth,especially in nutrient-poor desert steppe ecosystems.However,the effects of N deposition on plant-soil microbial community interactions in such ecosystems remain poorly understood.To investigate these effects,we conducted a 6-year N-addition field experiment in a Stipa breviflora Griseb.desert steppe in Inner Mongolia Autonomous Region,China.Four N treatment levels(N0,N30,N50,and N100,corresponding to 0,30,50,and 100 kg N/(hm2•a),respectively)were applied to simulate atmospheric N deposition.The results showed that N deposition did not significantly affect the aboveground biomass of desert steppe plants.N deposition did not significantly reduce the alfa-diversity of plant and microbial communities in the desert steppe,and low and mediate N additions(N30 and N50)had a promoting effect on them.The variation pattern of plant Shannon index was consistent with that of the soil bacterial Chao1 index.N deposition significantly affected the beta-diversity of plants and soil bacteria,but did not significantly affect fungal communities.In conclusion,N deposition led to co-evolution between desert steppe plants and soil bacterial communities,while fungal communities exhibited strong stability and did not undergo significant changes.These findings help clarify atmospheric N deposition effects on the ecological health and function of the desert steppe.展开更多
Parasitic plants and their hosts communicate through haustorial connections.Nutrient deficiency is a common stress for plants,yet little is known about whether and how host plants and parasites communicate during adap...Parasitic plants and their hosts communicate through haustorial connections.Nutrient deficiency is a common stress for plants,yet little is known about whether and how host plants and parasites communicate during adaptation to such nutrient stresses.In this study,we used transcriptomics and proteomics to analyze how soybean(Glycine max)and its parasitizing dodder(Cuscuta australis)respond to nitrate and phosphate deficiency(-N and-P).After-N and-P treatment,the soybean and dodder plants exhibited substantial changes of transcriptome and proteome,although soybean plants showed very few transcriptional responses to-P and dodder did not show any transcriptional changes to either-N or-P.Importantly,large-scale interplant transport of mRNAs and proteins was detected.Although the mobile mRNAs only comprised at most 0.2%of the transcriptomes,the foreign mobile proteins could reach 6.8%of the total proteins,suggesting that proteins may be the major forms of interplant communications.Furthermore,the interplant mobility of macromolecules was specifically affected by the nutrient regimes and the transport of these macromolecules was very likely independently regulated.This study provides new insight into the communication between host plants and parasites under stress conditions.展开更多
[Objective]The paper was to investigate the impact of plant extracts replacing anticoccidial drugs on growth performance and fecal coccidia count in broilers.[Method]A total of 234 one-day-old healthy yellow-feathered...[Objective]The paper was to investigate the impact of plant extracts replacing anticoccidial drugs on growth performance and fecal coccidia count in broilers.[Method]A total of 234 one-day-old healthy yellow-feathered broilers were selected and randomly divided into 3 groups,with 6 replicates in each group and 13 broilers in each replicate.The test lasted for a total of 55 d,The control group was fed the basic diet,the anticoccidial group was fed the basic diet+500 g/t dinitolmide,and the plant extract group was fed the basic diet+500 g/t plant extract.[Result]The daily gain of the plant extract group from 1 to 21 days of age was significantly higher than that of the anticoccidial drug group(P<0.05),and the feed/gain ratio was significantly lower than that of the anticoccidial drug group(P<0.05).There was no significant difference in daily gain and feed intake between the plant extract group and the anticoccidial drug group from 1 to 55 days of age(P>0.05),and the feed/gain ratio was reduced by 6.30%and the mortality and culling rate was reduced by 10.26%.The number of fecal coccidia at 33 days of age in the plant extract group was found to be significantly lower than that observed in the anticoccidial group and the control group(P<0.05).In conclusion,the administration of plant extracts resulted in a notable enhancement in the growth performance of chicks aged 1-21 days,when compared with the use of anticoccidial drugs.No significant difference was observed in growth performance between the plant extract and the anticoccidial drugs from 1 to 55 days of age.The administration of plant extracts resulted in a notable reduction in the fecal coccidia count.[Conclusion]Plant extracts may serve as viable alternatives to anticoccidial drugs and show promise for application in animal husbandry.展开更多
To establish an efficient regeneration method for the rare and endangered plant Mussaenda anomala to address problems regarding its reproductive obstacles and scarce populations.In this study,the terminal buds,axillar...To establish an efficient regeneration method for the rare and endangered plant Mussaenda anomala to address problems regarding its reproductive obstacles and scarce populations.In this study,the terminal buds,axillary buds,stem segments with two axillary buds,stem segments with two axillary buds and one terminal bud,and leaves of M.anomala were used as explants.The effects of different explants and disinfection methods,plant growth regulators and substrates on plant regeneration were explored.The following results were obtained:(1)The terminal bud was a suitable explant for M.anomala tissue culture,and the disinfection method utilized was treatment with 0.2%HgCl2 for 8 min.(2)Initiate medium:MS basic medium supplemented with 0.5 mg/L 6-BA and 0.2 mg/L IBA for the high germination rate(100%)and the maximum bud height(1.70 cm)of the terminal bud.(3)Proliferation medium:MS basic medium supplemented with 3.0 mg/L 6-BA and 0.2 mg/L IBA for a high proliferation rate(96%)and proliferation time(6.0)of terminal buds.(4)Proliferation medium supplemented with 0.7 mg/L GA3 significantly increased the bud heights of multiple buds.(5)Rooting medium:MS basic medium supplemented with 0.5 mg/L IBA and 0.5 mg/L IAA for a high rooting rate(88%),root number(12.0)and root length(5.07 cm).(6)The optimal substrate for seedling acclimation and transplanting was perlite:vermiculite(1:1),which resulted in the highest survival rate(97%)and plant height(5.89 cm),as well as better growth potential for seedlings.The surfaces of M.anomala explants are densely covered with trichome,which increased the difficulty of disinfection;the plant growth regulators directly affected the growth and development in the regeneration process of M.anomala,and the substrate significantly affected the survival rate and height growth for seedling acclimation.展开更多
This paper reviews the origins and classification of plant essential oil resources,along with prevalent extraction techniques for their active constituents.By integrating insights on the utilization of plant essential...This paper reviews the origins and classification of plant essential oil resources,along with prevalent extraction techniques for their active constituents.By integrating insights on the utilization of plant essential oils for plant pest management,the comprehensive analysis reveals multiple functionalities exhibited by plant essential oils,including fumigation,contact toxicity,repellent action,antifeedant activity,and growth inhibition.Furthermore,the paper highlights the challenges associated with plant essential oils in plant protection and outlines future research directions,aiming to offer valuable insights for the advancement of botanical insecticides.展开更多
[Objectives]This study was conducted to explore the characteristics of plant diversity of Jiangxia Wetland in Lhasa River basin.[Methods]Based on the survey data of 37 plant community in three types of sample plots of...[Objectives]This study was conducted to explore the characteristics of plant diversity of Jiangxia Wetland in Lhasa River basin.[Methods]Based on the survey data of 37 plant community in three types of sample plots of Jiangxia Wetland in the Lhasa River basin,this study analyzed the diversity of plant community in different habitats of Jiangxia Wetland from Pielou evenness,Margalef richness,Simpson and Shannon Wiener diversity indexes of different types and levels.[Results]The Pielou index,Shannon-Wiener index and Simpson diversity index of dry land was higher than those of other plots,while the Margalef species richness index of the ecotone of seasonally flooded and dry land was higher than that of other plots.The Pielou index,Shannon-Wiener index,Simpson diversity index and Margalef species richness index of composite plants were higher than those of other herbaceous plants.The Shannon-Wiener index,Simpson diversity index and Margalef species richness index of hygrophytes were higher than those of other plants,while the Pielou index evenness index of aquatic plants was higher than that of other plants.Annual or perennial herbaceous plants occupied the primary position in the study area,and shrub plants occupied a secondary position,and floating plants took the lowest position.[Conclusions]The results of this study can provide theoretical support or reference basis for the scientific management of comprehensive wetland systems such as wetland ecosystem restoration and plant diversity protection in Jiangxia Wetland.展开更多
Parasitic plants are challenging to agricultural crops and forestry development,which are sources of major revenues in several countries,including Nigeria.Nevertheless,parasitic plants are important to human society a...Parasitic plants are challenging to agricultural crops and forestry development,which are sources of major revenues in several countries,including Nigeria.Nevertheless,parasitic plants are important to human society as they have an abundance of bioactive compounds with pharmacological relevance.Thus,it becomes expedient to know the benefits of these plants and potential means of management.This review discusses four selected parasitic plants in Nigeria,namely Viscum album,Striga hermonthica,Tapinanthus bangwensis and Cuscuta campestris.Relevant information about their pharmacological relevance and biocontrol was obtained from credible databases,including the National Library of Medicine,SCOPUS,and Google Scholar.The review showed that all four plants have been extensively studied for their antioxidant and antitumor properties.Also,antimicrobial and anti-inflammatory activities are common pharmacological values among parasitic plants.These are largely due to the presence of abundant beneficial classes of phytocompounds.Furthermore,there is an increasing number of biocontrol studies on the use of microorganisms,such as Phaeobotryosphaeria visci,Sphaeropsis visci,Pandoraea pulminicol,Colletotrichum gloeosporioides,and Fusarium oxysporum in controlling and managing these seemingly disastrous plants.It is hoped that this review will spur further studies into the conservation and proper management of parasitic plants using strategically developed biocontrol.展开更多
Dabie Mountains are located at the junction of Anhui,Henan and Hubei provinces in the East of China.With its varied altitude,climate,and soil texture,Dabie Mountains are extremely rich in wild plant resources.The 12th...Dabie Mountains are located at the junction of Anhui,Henan and Hubei provinces in the East of China.With its varied altitude,climate,and soil texture,Dabie Mountains are extremely rich in wild plant resources.The 12th Traditional Chinese Medicine(TCM)Resources Scientific Expedition Team of Shenyang Pharmaceutical University conducted a study on wild vascular plants resources,especially medicinal vascular plants,through field investigation,literature review and specimen identification.There were 472 species of vascular plants belonging to 347 genera and 125 families collected during July 2018 in this area,of which 424 species were medicinal vascular plants,accounting for 89.83%of the total.From the perspective of medicinal parts,most of the medicinal plants there have values in their roots and rhizomes,as well as the whole plants.The efficacy and characteristics of these pharmaceutical dimensions were also summarized and analyzed in detail.Besides,among the wild vascular plants collected,the most dominant families with the biggest numbers of species are Compositae,Lamiaceae,Liliaceae,Rosaceae,Leguminosae,Ranunculaceae,Saxifragaceae and Polygonaceae,and the dominant genus are Viola and Sedum.In terms of life form,perennial herbs are dominant,accounting for 55.72%of the total species,followed by some annual(or biennial)herbs,shrubs and lianas.Finally,recommendations are put forward for strengthening the protection and utilization of wild medicinal plant resources in Dabie Mountains.展开更多
The traditional vaccines against hepatitis have been instrumental in reducing the incidence of some types of viral hepatitis;however,the need for cost-effective,easily distributable,and needle-free vaccine alternative...The traditional vaccines against hepatitis have been instrumental in reducing the incidence of some types of viral hepatitis;however,the need for cost-effective,easily distributable,and needle-free vaccine alternatives has led to the exploration of plant-based vaccines.Plant-based techniques offer a promising avenue for producing viral hepatitis vaccines due to their low-cost cultivation,scalability,and the potential for oral administration.This review highlights the successful expression of hepatitis B surface antigens in plants and the subsequent formation of virus-like particles,which have shown immunogenicity in preclinical and clinical trials.The challenges such as achieving sufficient antigen expression levels,ensuring consistent dosing,and navigating regulatory frameworks,are addressed.The review considers the potential of plant-based vaccines to meet the demands of rapid vaccine deployment in response to outbreaks and their role in global immunization strategies,particularly in resource-limited settings.This review underscores the significant strides made in plant molecular farming and the potential of plant-based vaccines to complement existing immunization methods against viral hepatitis.展开更多
The destruction of forests has led to plant diversity and species being lost at an unprecedented rate and a decrease in ecosystem services. Plant conservation strategies are important to support the development of liv...The destruction of forests has led to plant diversity and species being lost at an unprecedented rate and a decrease in ecosystem services. Plant conservation strategies are important to support the development of livelihoods based on the sustainable uses of plants and promote the understanding and sharing of the benefits and functions of plants. Botanical gardens allocate most of their resources to plant conservation and the development of educational activities such as making plant species diversity known to the public. These gardens can also play an essential role in human well-being and provide in human needs. In this article, we review the history of the development of Kirstenbosch National Botanical Garden and the development of other national botanical gardens in South Africa. We will discuss conservation through cultivation, discovering and documenting diversity of plants, indigenous plants, threatened plants, medicinal plants, extinctions and rediscoveries, environmental education, conservation science, citizen science, horticulture, research and creating a haven for biodiversity. Future challenges and responsibilities of botanical gardens will be discussed including in situ and ex situ cultivation, promoting awareness, creating partnerships, increasing capacity building and training activities, sharing information and making gardens sustainable.展开更多
Renewable energy is increasingly in demand for a variety of applications in both urban and rural areas. There are, however, a number of implementation constraints in some countries, even though sunshine, wind and wate...Renewable energy is increasingly in demand for a variety of applications in both urban and rural areas. There are, however, a number of implementation constraints in some countries, even though sunshine, wind and water are abundant and available. As part of this research, we are carrying out a technical and economic study on the availability of renewable energy in Cameroon, with a view to combining several sources of solar, biomass, wind and hydroelectric power to meet energy demand both inside and outside the country, in countries such as Chad, Gabon and Nigeria. In this work, the implementation of the entire system in the HOMER software demonstrates the feasibility and possibility of implementing a multi-source power plant based on renewable energies. Calculation of the levelized cost of energy (LCOE) and the net present cost (NPC) shows that a capacity of 485 GW can meet the energy demand of the countries bordering Cameroon. Furthermore, the calculation of the performance ratio gives a PR = 46.52 and a Capacity factor of CF = 11.64. The system is profitable not only economically but also environmentally, as it reduces greenhouse gas emissions and energy losses.展开更多
Jasmonic acid is a crucial phytohormone that plays a pivotal role,serving as a regulator to balancing plant development and resistance.However,there are analogous and distinctive characteristics exhibited in JA biosyn...Jasmonic acid is a crucial phytohormone that plays a pivotal role,serving as a regulator to balancing plant development and resistance.However,there are analogous and distinctive characteristics exhibited in JA biosynthesis,perception,and signal transduction pathways in both herbaceous and woody plants.Moreover,the majority of research subjects have predominantly focused on the function of JA in model or herbaceous plants.Consequently,there is a significant paucity of studies investigating JA regulation networks in woody plants,particularly concerning post-transcriptional regulatory events such as alternative splicing(AS).This review article aims to conduct a comprehensive summary of advancements that JA signals regulate plant development across various woody species,comparing the analogous features and regulatory differences to herbaceous counterparts.In addition,we summarized the involvement of AS events including splicing factor(SF)and transcripts in the JA regulatory network,highlighting the effectiveness of high-throughput proteogenomic methods.A better understanding of the JA signaling pathway in woody plants has pivotal implications for forestry production,including optimizing plant management and enhancing secondary metabolite production.展开更多
Shallow landslides can be mitigated through the hydro-mechanical reinforcement provided by vegetation. Several critical parameters, such as plant spacing and plant age, play a significant role in influencing bioengine...Shallow landslides can be mitigated through the hydro-mechanical reinforcement provided by vegetation. Several critical parameters, such as plant spacing and plant age, play a significant role in influencing bioengineered slope stability facilitated by vegetation. However, the coupling of these effects on the stability of vegetated slope has been ignored. The objective of this study is to investigate the hydro-mechanical impact of vegetation growth and spacing on the stability of bioengineered slopes based on the predictions of a calibrated numerical model against field measurements. The impact of vegetation is investigated, with specific attention given to different plant spacing and growth stages, utilizing Schefflera arboricola. In the context of rainfall, it was observed that younger vegetation demonstrated more effective matric suction retention and recovery up to 25 kPa compared to the aged vegetation. Vegetation was revealed to substantially enhance the factor of safety up to 0.3 compared to the bare slope. Plant growth and reducing plant spacing increased the impact of root systems on both hydraulic and mechanical stability, primarily attributable to the influence of root cohesion rather than transpiration rates. The results revealed that the mechanical contribution to the factor of safety enhancement was raised from one-third to two-thirds because of the vegetation-induced cohesion within the growing rooted zone.展开更多
文摘Hot arid zones represent vital reservoirs of unique species and ecosystems,holding significant importance for biodiversity.This study aimed to explore the plant diversity associated with tree plantations in urban ecosystems under hyper-arid climatic conditions in the Sahara Desert of Algeria.In May 2022,30 quadrats measuring 1 m^(2) each were established at the base of Phoenix dactylifera,Leucaena leucocephala,and Tamarix aphylla,corresponding to the dominant tree species in each of three plantations.In each quadrat,the plant quantitative inventory was conducted to measure plant diversity and similarity among the studied plantations.Based on this,we assessed the plant functional traits and rarity/abundance status of the flora.The findings revealed a diverse flora associated with the studied plantations,comprising 29 plant species grouped into 27 genera and 12 families.Notably,Poaceae(accounting for 30.8% of the flora),Asteraceae(25.0%),and Zygophyllaceae(21.6%)were well-represented.With an overall density of approximately 555 individuals/m^(2),Zygophyllum album(120 individuals/m^(2))and Polypogon monspeliensis(87 individuals/m^(2))emerged as the most abundant species.Functional trait analysis underscored the pivotal role of therophytes(constituting over 50.0% of the flora)and anemochorous species(33.0%-62.5%).Phytogeographic analysis emphasized the prevalence of the Saharo-Arabic element(constituting over 31.0% of the flora)and the Mediterranean Saharo-Arabic element(9.5%-21.5%).The Cosmopolitan element thrived under disturbance factors,recording percentages from 13.0% to 20.0% of the plant community.The rarity/abundance status of the flora emphasized the significance of rare,common,and very common species in the studied plantations.These findings could provide fundamental data for the effective control and management of biodiversity in hot hyper-arid urban ecosystems.
基金the National Key R&D Program of China(2021YFD1400200)the National Natural Science Foundation of China(32272588,31972299).
文摘The interactions between plants and herbivorous insects are complex and involve multiple factors,driving species formation and leading to the beginning of co-evolution and diversification of plant and insect molecules.Various molecular processes regulate the interactions between plants and herbivorous insects.Here,we discuss the molecular patterns of plant perception of herbivorous insect feeding through activation of early signaling components,crosstalk of plant defense network composed of multiple plant hormones,and various adaptive changes in insect responses to plant defenses.Both plant defenses and insect counter-defenses are molecular adaptation processes to each other.Molecular models of plant-herbivorous insect interactions can more intuitively help us to understand the co-evolutionary arms race between plants and herbivorous insects.These results will provide detailed evidence to elucidate and enrich the interaction network of plant-herbivorous insects.
基金The National Natural Science Foundation of China (32371993)The Natural Science Research Key Project of Anhui Provincial University(2022AH040125&2023AH040135)The Key Research and Development Plan of Anhui Province (202204c06020022&2023n06020057)。
文摘This study aimed to address the challenge of accurately and reliably detecting tomatoes in dense planting environments,a critical prerequisite for the automation implementation of robotic harvesting.However,the heavy reliance on extensive manually annotated datasets for training deep learning models still poses significant limitations to their application in real-world agricultural production environments.To overcome these limitations,we employed domain adaptive learning approach combined with the YOLOv5 model to develop a novel tomato detection model called as TDA-YOLO(tomato detection domain adaptation).We designated the normal illumination scenes in dense planting environments as the source domain and utilized various other illumination scenes as the target domain.To construct bridge mechanism between source and target domains,neural preset for color style transfer is introduced to generate a pseudo-dataset,which served to deal with domain discrepancy.Furthermore,this study combines the semi-supervised learning method to enable the model to extract domain-invariant features more fully,and uses knowledge distillation to improve the model's ability to adapt to the target domain.Additionally,for purpose of promoting inference speed and low computational demand,the lightweight FasterNet network was integrated into the YOLOv5's C3 module,creating a modified C3_Faster module.The experimental results demonstrated that the proposed TDA-YOLO model significantly outperformed original YOLOv5s model,achieving a mAP(mean average precision)of 96.80%for tomato detection across diverse scenarios in dense planting environments,increasing by 7.19 percentage points;Compared with the latest YOLOv8 and YOLOv9,it is also 2.17 and 1.19 percentage points higher,respectively.The model's average detection time per image was an impressive 15 milliseconds,with a FLOPs(floating point operations per second)count of 13.8 G.After acceleration processing,the detection accuracy of the TDA-YOLO model on the Jetson Xavier NX development board is 90.95%,the mAP value is 91.35%,and the detection time of each image is 21 ms,which can still meet the requirements of real-time detection of tomatoes in dense planting environment.The experimental results show that the proposed TDA-YOLO model can accurately and quickly detect tomatoes in dense planting environment,and at the same time avoid the use of a large number of annotated data,which provides technical support for the development of automatic harvesting systems for tomatoes and other fruits.
基金the Natural Science Foundation of Xinjiang Uygur Autonomous Region(2022D01A351)the Joint Fund of National Natural Science Foundation of China(U2003214)+1 种基金the Key Project of Xinjiang Uygur Autonomous Region Natural Science Foundation(2022D01D083)the Tianchi Talent Introduction Project of Xinjiang Uygur Autonomous Region.We thank Mr.LI Yonggang,Mrs.DU Fang,Mrs.SHEN Hui,Mrs.PAN Qi,and Mrs.MENG Huanhuan for providing help with the experiment in the field.
文摘Phyllosphere microorganisms are a crucial component of environmental microorganisms,highly influenced by host characteristics,and play a significant role in plant health and productivity.Nonetheless,the impact of host characteristics on shaping phyllosphere microbial communities of plants with different life forms remains ambiguous.Utilizing high-throughput sequencing technology,this study analyzed the diversity and community composition of phyllosphere epiphytic microorganisms(e.g.,bacteria and fungi)of various plant life forms in the hinterland of the Gurbantunggut Desert,Northwest China.Functional annotation of prokaryotic taxa(FAPROTAX)and fungi function guild(FUNGuild)were employed to assess the ecological functions of microorganisms and to investigate the role of stochastic and deterministic processes in shaping phyllosphere microbial communities.Result showed a diverse array of phyllosphere epiphytic microorganisms in the desert plants,with Proteobacteria,Cyanobacteria,and Actinobacteriota dominating bacterial community,while Ascomycota and Basidiomycota were prevalent in fungal community.Comparison across different plant life forms highlighted distinct microbial communities,indicating strong filtering effects by plant characteristics.FAPROTAX prediction identified intracellular parasites(accounting for 27.44%of bacterial community abundance),chemoheterotrophy(10.12%),and phototrophy(17.41%)as the main functions of epiphytic bacteria on leaves of different life form plants.FUNGuild prediction indicated that phyllosphere epiphytic fungi primarily served as Saprotrophs(81.77%),Pathotrophs(17.41%),and Symbiotrophs(0.82%).Co-occurrence network analysis demonstrated a predominance of positive correlations among different microbial taxa.Raup-Crick dissimilarity index analysis revealed that deterministic processes predominantly influenced phyllosphere bacterial and fungal community assembly.Variance partitioning analysis and random forest modeling suggested that plant leaf functional traits significantly impacted both bacterial and fungal community composition,with fungal community composition showing a closer association with leaf nutrients and physiology compared with bacterial community composition.The distinct responses of bacterial and fungal communities to plant traits were attributed to the differing properties of bacteria and fungi,such as bacteria having higher potential dispersal rates and broader ecological niches than fungi.Overall,the results indicate that phyllosphere bacterial and fungal communities undergo similar community assembly processes,with fungi being more influenced by plant characteristics than bacteria.These findings offer novel insights into the ecology of phyllosphere microbial communities of desert plants.
基金funded by the National Natural Science Foundation of China (No.32360418)the Guizhou Provincial Basic Research Program (Natural Science)(No.QianKeHeJiChu-ZK[2024]YiBan022)。
文摘Background:With the expansion of urban areas,the remnants of forested areas play a crucial role in preserving biodiversity in urban environments.This study aimed to explore the impact of spatiotemporal urban expansion on the networks of leaf traits in woody plants within remnant forest patches,thereby enhancing our understanding of plant adaptive strategies and contributing to the conservation of urban biodiversity.Methods:Our study examined woody plants within 120 sample plots across 15 remnant forest patches in Guiyang,China.We constructed leaf trait networks (LTNs) based on 26 anatomical,structural,and compositional leaf traits and assessed the effects of the spatiotemporal dynamics of urban expansion on these LTNs.Results and conclusions:Our results indicate that shrubs within these patches have greater average path lengths and diameters than trees.With increasing urban expansion intensity,we observed a rise in the edge density of the LTN-shrubs.Additionally,modularity within the networks of shrubs decreased as road density and urban expansion intensity increased,and increases in the average path length and average clustering coefficient for shrubs were observed with a rise in the composite terrain complexity index.Notably,patches subjected to‘leapfrog’expansion exhibited greater average patch length and diameter than those experiencing edge growth.Stomatal traits were found to have high degree centrality within these networks,signifying their substantial contribution to multiple functions.In urban remnant forests,shrubs bolster their resilience to variable environmental pressures by augmenting the complexity of their leaf trait networks.
文摘With the rapid development of modern molecular biology and bioinformatics,many studies have proved that transcription factors play an important role in regulating the growth and development of plants.SPATULA(SPT)belongs to the bHLH transcription family and participates in many processes of regulating plant growth and development.This review systemically summarizes the multiple roles of SPT in plant growth,development,and stress response,including seed germination,flowering,leaf size,carpel development,and root elongation,which is helpful for us to better understand the functions of SPT.
基金financially supported by the National Natural Science Foundation of China(31901093,32220103010,32192431,31722013)National Key R&D Program of China(2020YFA0608100,2022YFF1302505)the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(ZDBS-LY-DQC019)。
文摘Discerning vulnerability differences among different aged trees to drought-driven growth decline or to mortality is critical to implement age-specific countermeasures for forest management in water-limited areas.An important species for afforestation in dry environments of northern China,Mongolian pine(Pinus sylvestris var.mongolica Litv.)has recently exhibited growth decline and dieback on many sites,particularly pronounced in old-growth plantations.However,changes in response to drought stress by this species with age as well as the underlying mechanisms are poorly understood.In this study,tree-ring data and remotely sensed vegetation data were combined to investigate variations in growth at individual tree and stand scales for young(9-13 years)and aging(35-52 years)plantations of Mongolian pine in a water-limited area of northern China.A recent decline in tree-ring width in the older plantation also had lower values in satellited-derived normalized difference vegetation indices and normalized difference water indices relative to the younger plantations.In addition,all measured growth-related metrics were strongly correlated with the self-calibrating Palmer drought severity index during the growing season in the older plantation.Sensitivity of growth to drought of the older plantation might be attributed to more severe hydraulic limitations,as reflected by their lower sapwood-and leaf-specific hydraulic conductivities.Our study presents a comprehensive view on changes of growth with age by integrating multiple methods and provides an explanation from the perspective of plant hydraulics for growth decline with age.The results indicate that old-growth Mongolian pine plantations in water-limited environments may face increased growth declines under the context of climate warming and drying.
基金the National Natural Science Foundation of China(31860136,31560156)the Basic Scientific Research Service Fee Project of Colleges and Universities of Inner Mongolia Autonomous Regionthe Graduate Scientific Research Innovation Project of Inner Mongolia Autonomous Region(B20210158Z).
文摘Nitrogen(N)deposition is a significant aspect of global change and poses a threat to terrestrial biodiversity.The impact of plant-soil microbe relationships to N deposition has recently attracted considerable attention.Soil microorganisms have been proven to provide nutrients for specific plant growth,especially in nutrient-poor desert steppe ecosystems.However,the effects of N deposition on plant-soil microbial community interactions in such ecosystems remain poorly understood.To investigate these effects,we conducted a 6-year N-addition field experiment in a Stipa breviflora Griseb.desert steppe in Inner Mongolia Autonomous Region,China.Four N treatment levels(N0,N30,N50,and N100,corresponding to 0,30,50,and 100 kg N/(hm2•a),respectively)were applied to simulate atmospheric N deposition.The results showed that N deposition did not significantly affect the aboveground biomass of desert steppe plants.N deposition did not significantly reduce the alfa-diversity of plant and microbial communities in the desert steppe,and low and mediate N additions(N30 and N50)had a promoting effect on them.The variation pattern of plant Shannon index was consistent with that of the soil bacterial Chao1 index.N deposition significantly affected the beta-diversity of plants and soil bacteria,but did not significantly affect fungal communities.In conclusion,N deposition led to co-evolution between desert steppe plants and soil bacterial communities,while fungal communities exhibited strong stability and did not undergo significant changes.These findings help clarify atmospheric N deposition effects on the ecological health and function of the desert steppe.
基金supported by the National Natural Science Foundation of China (31970274 (J.W.), 32170272 (X.W.), 32100251 (J.Z.), 32000179 (Y.X.))the Special Research Assistant of Chinese Academy of Sciences (J.Z. and Y.X.), China Postdoctoral Science Foundation (2022M713224 (J.Z.))+6 种基金the Strategic Priority Research Program of Chinese Academy of Sciences (XDPB16 (J.W.))the Yunnan Innovation Team Project (202105AE160013 (J.W.))CAS “Light of West China” Program (G.S.)Yunnan Revitalization Talent Support Program “Young Talents” Project (XDYC-QNRC-2022-0301 (J.Z.), XDYC-QNRC-2022-0001 (G.S.))the General and Key Project of the Applied Basic Research Program of Yunnan (202001AS070021(J.W.))Yunnan Fundamental Research Projects-General Project (202101AT070457 (S.L.))Yunnan Fundamental Research Projects-Youth Talent Project (202101AU070021(S.L.))
文摘Parasitic plants and their hosts communicate through haustorial connections.Nutrient deficiency is a common stress for plants,yet little is known about whether and how host plants and parasites communicate during adaptation to such nutrient stresses.In this study,we used transcriptomics and proteomics to analyze how soybean(Glycine max)and its parasitizing dodder(Cuscuta australis)respond to nitrate and phosphate deficiency(-N and-P).After-N and-P treatment,the soybean and dodder plants exhibited substantial changes of transcriptome and proteome,although soybean plants showed very few transcriptional responses to-P and dodder did not show any transcriptional changes to either-N or-P.Importantly,large-scale interplant transport of mRNAs and proteins was detected.Although the mobile mRNAs only comprised at most 0.2%of the transcriptomes,the foreign mobile proteins could reach 6.8%of the total proteins,suggesting that proteins may be the major forms of interplant communications.Furthermore,the interplant mobility of macromolecules was specifically affected by the nutrient regimes and the transport of these macromolecules was very likely independently regulated.This study provides new insight into the communication between host plants and parasites under stress conditions.
文摘[Objective]The paper was to investigate the impact of plant extracts replacing anticoccidial drugs on growth performance and fecal coccidia count in broilers.[Method]A total of 234 one-day-old healthy yellow-feathered broilers were selected and randomly divided into 3 groups,with 6 replicates in each group and 13 broilers in each replicate.The test lasted for a total of 55 d,The control group was fed the basic diet,the anticoccidial group was fed the basic diet+500 g/t dinitolmide,and the plant extract group was fed the basic diet+500 g/t plant extract.[Result]The daily gain of the plant extract group from 1 to 21 days of age was significantly higher than that of the anticoccidial drug group(P<0.05),and the feed/gain ratio was significantly lower than that of the anticoccidial drug group(P<0.05).There was no significant difference in daily gain and feed intake between the plant extract group and the anticoccidial drug group from 1 to 55 days of age(P>0.05),and the feed/gain ratio was reduced by 6.30%and the mortality and culling rate was reduced by 10.26%.The number of fecal coccidia at 33 days of age in the plant extract group was found to be significantly lower than that observed in the anticoccidial group and the control group(P<0.05).In conclusion,the administration of plant extracts resulted in a notable enhancement in the growth performance of chicks aged 1-21 days,when compared with the use of anticoccidial drugs.No significant difference was observed in growth performance between the plant extract and the anticoccidial drugs from 1 to 55 days of age.The administration of plant extracts resulted in a notable reduction in the fecal coccidia count.[Conclusion]Plant extracts may serve as viable alternatives to anticoccidial drugs and show promise for application in animal husbandry.
基金funded by the National Natural Science Foundation of China–Guizhou Provincial People’s Government Karst Science Research Center Project(U1812401)the National Natural Science Foundation of China(31760124),the Department of Education of Guizhou Province(grant code qianjiaoji(2022)136)the New Seedling Program of Guizhou Normal University(grant code 2021-B05).
文摘To establish an efficient regeneration method for the rare and endangered plant Mussaenda anomala to address problems regarding its reproductive obstacles and scarce populations.In this study,the terminal buds,axillary buds,stem segments with two axillary buds,stem segments with two axillary buds and one terminal bud,and leaves of M.anomala were used as explants.The effects of different explants and disinfection methods,plant growth regulators and substrates on plant regeneration were explored.The following results were obtained:(1)The terminal bud was a suitable explant for M.anomala tissue culture,and the disinfection method utilized was treatment with 0.2%HgCl2 for 8 min.(2)Initiate medium:MS basic medium supplemented with 0.5 mg/L 6-BA and 0.2 mg/L IBA for the high germination rate(100%)and the maximum bud height(1.70 cm)of the terminal bud.(3)Proliferation medium:MS basic medium supplemented with 3.0 mg/L 6-BA and 0.2 mg/L IBA for a high proliferation rate(96%)and proliferation time(6.0)of terminal buds.(4)Proliferation medium supplemented with 0.7 mg/L GA3 significantly increased the bud heights of multiple buds.(5)Rooting medium:MS basic medium supplemented with 0.5 mg/L IBA and 0.5 mg/L IAA for a high rooting rate(88%),root number(12.0)and root length(5.07 cm).(6)The optimal substrate for seedling acclimation and transplanting was perlite:vermiculite(1:1),which resulted in the highest survival rate(97%)and plant height(5.89 cm),as well as better growth potential for seedlings.The surfaces of M.anomala explants are densely covered with trichome,which increased the difficulty of disinfection;the plant growth regulators directly affected the growth and development in the regeneration process of M.anomala,and the substrate significantly affected the survival rate and height growth for seedling acclimation.
基金Supported by Undergraduate Innovation and Entrepreneurship Training Program of Guangdong Province(202310580005)School-level Youth Project of the 2024 Zhaoqing University(QN202443)+1 种基金Rural Science and Technology Commissioners in Towns to Help Towns and Villages Group Assistance Project(2021-1056-9-4)Construction of China Agricultural Industry Research System(CARS-26).
文摘This paper reviews the origins and classification of plant essential oil resources,along with prevalent extraction techniques for their active constituents.By integrating insights on the utilization of plant essential oils for plant pest management,the comprehensive analysis reveals multiple functionalities exhibited by plant essential oils,including fumigation,contact toxicity,repellent action,antifeedant activity,and growth inhibition.Furthermore,the paper highlights the challenges associated with plant essential oils in plant protection and outlines future research directions,aiming to offer valuable insights for the advancement of botanical insecticides.
基金Supported by Prefecture-level Science and Technology Program of Hetian Prefecture(202439).
文摘[Objectives]This study was conducted to explore the characteristics of plant diversity of Jiangxia Wetland in Lhasa River basin.[Methods]Based on the survey data of 37 plant community in three types of sample plots of Jiangxia Wetland in the Lhasa River basin,this study analyzed the diversity of plant community in different habitats of Jiangxia Wetland from Pielou evenness,Margalef richness,Simpson and Shannon Wiener diversity indexes of different types and levels.[Results]The Pielou index,Shannon-Wiener index and Simpson diversity index of dry land was higher than those of other plots,while the Margalef species richness index of the ecotone of seasonally flooded and dry land was higher than that of other plots.The Pielou index,Shannon-Wiener index,Simpson diversity index and Margalef species richness index of composite plants were higher than those of other herbaceous plants.The Shannon-Wiener index,Simpson diversity index and Margalef species richness index of hygrophytes were higher than those of other plants,while the Pielou index evenness index of aquatic plants was higher than that of other plants.Annual or perennial herbaceous plants occupied the primary position in the study area,and shrub plants occupied a secondary position,and floating plants took the lowest position.[Conclusions]The results of this study can provide theoretical support or reference basis for the scientific management of comprehensive wetland systems such as wetland ecosystem restoration and plant diversity protection in Jiangxia Wetland.
文摘Parasitic plants are challenging to agricultural crops and forestry development,which are sources of major revenues in several countries,including Nigeria.Nevertheless,parasitic plants are important to human society as they have an abundance of bioactive compounds with pharmacological relevance.Thus,it becomes expedient to know the benefits of these plants and potential means of management.This review discusses four selected parasitic plants in Nigeria,namely Viscum album,Striga hermonthica,Tapinanthus bangwensis and Cuscuta campestris.Relevant information about their pharmacological relevance and biocontrol was obtained from credible databases,including the National Library of Medicine,SCOPUS,and Google Scholar.The review showed that all four plants have been extensively studied for their antioxidant and antitumor properties.Also,antimicrobial and anti-inflammatory activities are common pharmacological values among parasitic plants.These are largely due to the presence of abundant beneficial classes of phytocompounds.Furthermore,there is an increasing number of biocontrol studies on the use of microorganisms,such as Phaeobotryosphaeria visci,Sphaeropsis visci,Pandoraea pulminicol,Colletotrichum gloeosporioides,and Fusarium oxysporum in controlling and managing these seemingly disastrous plants.It is hoped that this review will spur further studies into the conservation and proper management of parasitic plants using strategically developed biocontrol.
文摘Dabie Mountains are located at the junction of Anhui,Henan and Hubei provinces in the East of China.With its varied altitude,climate,and soil texture,Dabie Mountains are extremely rich in wild plant resources.The 12th Traditional Chinese Medicine(TCM)Resources Scientific Expedition Team of Shenyang Pharmaceutical University conducted a study on wild vascular plants resources,especially medicinal vascular plants,through field investigation,literature review and specimen identification.There were 472 species of vascular plants belonging to 347 genera and 125 families collected during July 2018 in this area,of which 424 species were medicinal vascular plants,accounting for 89.83%of the total.From the perspective of medicinal parts,most of the medicinal plants there have values in their roots and rhizomes,as well as the whole plants.The efficacy and characteristics of these pharmaceutical dimensions were also summarized and analyzed in detail.Besides,among the wild vascular plants collected,the most dominant families with the biggest numbers of species are Compositae,Lamiaceae,Liliaceae,Rosaceae,Leguminosae,Ranunculaceae,Saxifragaceae and Polygonaceae,and the dominant genus are Viola and Sedum.In terms of life form,perennial herbs are dominant,accounting for 55.72%of the total species,followed by some annual(or biennial)herbs,shrubs and lianas.Finally,recommendations are put forward for strengthening the protection and utilization of wild medicinal plant resources in Dabie Mountains.
文摘The traditional vaccines against hepatitis have been instrumental in reducing the incidence of some types of viral hepatitis;however,the need for cost-effective,easily distributable,and needle-free vaccine alternatives has led to the exploration of plant-based vaccines.Plant-based techniques offer a promising avenue for producing viral hepatitis vaccines due to their low-cost cultivation,scalability,and the potential for oral administration.This review highlights the successful expression of hepatitis B surface antigens in plants and the subsequent formation of virus-like particles,which have shown immunogenicity in preclinical and clinical trials.The challenges such as achieving sufficient antigen expression levels,ensuring consistent dosing,and navigating regulatory frameworks,are addressed.The review considers the potential of plant-based vaccines to meet the demands of rapid vaccine deployment in response to outbreaks and their role in global immunization strategies,particularly in resource-limited settings.This review underscores the significant strides made in plant molecular farming and the potential of plant-based vaccines to complement existing immunization methods against viral hepatitis.
文摘The destruction of forests has led to plant diversity and species being lost at an unprecedented rate and a decrease in ecosystem services. Plant conservation strategies are important to support the development of livelihoods based on the sustainable uses of plants and promote the understanding and sharing of the benefits and functions of plants. Botanical gardens allocate most of their resources to plant conservation and the development of educational activities such as making plant species diversity known to the public. These gardens can also play an essential role in human well-being and provide in human needs. In this article, we review the history of the development of Kirstenbosch National Botanical Garden and the development of other national botanical gardens in South Africa. We will discuss conservation through cultivation, discovering and documenting diversity of plants, indigenous plants, threatened plants, medicinal plants, extinctions and rediscoveries, environmental education, conservation science, citizen science, horticulture, research and creating a haven for biodiversity. Future challenges and responsibilities of botanical gardens will be discussed including in situ and ex situ cultivation, promoting awareness, creating partnerships, increasing capacity building and training activities, sharing information and making gardens sustainable.
文摘Renewable energy is increasingly in demand for a variety of applications in both urban and rural areas. There are, however, a number of implementation constraints in some countries, even though sunshine, wind and water are abundant and available. As part of this research, we are carrying out a technical and economic study on the availability of renewable energy in Cameroon, with a view to combining several sources of solar, biomass, wind and hydroelectric power to meet energy demand both inside and outside the country, in countries such as Chad, Gabon and Nigeria. In this work, the implementation of the entire system in the HOMER software demonstrates the feasibility and possibility of implementing a multi-source power plant based on renewable energies. Calculation of the levelized cost of energy (LCOE) and the net present cost (NPC) shows that a capacity of 485 GW can meet the energy demand of the countries bordering Cameroon. Furthermore, the calculation of the performance ratio gives a PR = 46.52 and a Capacity factor of CF = 11.64. The system is profitable not only economically but also environmentally, as it reduces greenhouse gas emissions and energy losses.
基金supported by the Natural Science Foundation of Jiangsu Province(BK20221334)the Jiangsu Agricultural Science and Technology Innovation Fund(CX(21)2023)+2 种基金the Science Technology and Innovation Committee of Shenzhen(JCYJ20210324115408023)the Major Project of Natural Science Research in Colleges of Jiangsu Province(20KJA220001)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX23_1115).
文摘Jasmonic acid is a crucial phytohormone that plays a pivotal role,serving as a regulator to balancing plant development and resistance.However,there are analogous and distinctive characteristics exhibited in JA biosynthesis,perception,and signal transduction pathways in both herbaceous and woody plants.Moreover,the majority of research subjects have predominantly focused on the function of JA in model or herbaceous plants.Consequently,there is a significant paucity of studies investigating JA regulation networks in woody plants,particularly concerning post-transcriptional regulatory events such as alternative splicing(AS).This review article aims to conduct a comprehensive summary of advancements that JA signals regulate plant development across various woody species,comparing the analogous features and regulatory differences to herbaceous counterparts.In addition,we summarized the involvement of AS events including splicing factor(SF)and transcripts in the JA regulatory network,highlighting the effectiveness of high-throughput proteogenomic methods.A better understanding of the JA signaling pathway in woody plants has pivotal implications for forestry production,including optimizing plant management and enhancing secondary metabolite production.
基金ort provided by Iran National Science Foundation for“Experimental study of the hydromechanical behavior of rooted soils in green stabilization of unsaturated slopes”by way of grant No.4000730by the Hong Kong Research Grants Council(no.16202422 and C6006-20G)is gratefully acknowledged.
文摘Shallow landslides can be mitigated through the hydro-mechanical reinforcement provided by vegetation. Several critical parameters, such as plant spacing and plant age, play a significant role in influencing bioengineered slope stability facilitated by vegetation. However, the coupling of these effects on the stability of vegetated slope has been ignored. The objective of this study is to investigate the hydro-mechanical impact of vegetation growth and spacing on the stability of bioengineered slopes based on the predictions of a calibrated numerical model against field measurements. The impact of vegetation is investigated, with specific attention given to different plant spacing and growth stages, utilizing Schefflera arboricola. In the context of rainfall, it was observed that younger vegetation demonstrated more effective matric suction retention and recovery up to 25 kPa compared to the aged vegetation. Vegetation was revealed to substantially enhance the factor of safety up to 0.3 compared to the bare slope. Plant growth and reducing plant spacing increased the impact of root systems on both hydraulic and mechanical stability, primarily attributable to the influence of root cohesion rather than transpiration rates. The results revealed that the mechanical contribution to the factor of safety enhancement was raised from one-third to two-thirds because of the vegetation-induced cohesion within the growing rooted zone.