By studying principles and methods related to early-warning model of plant diseases and using PSO method, parameter optimization was conducted to backward propagation neural network, and a pre-warning model for plant ...By studying principles and methods related to early-warning model of plant diseases and using PSO method, parameter optimization was conducted to backward propagation neural network, and a pre-warning model for plant diseases based on particle swarm and neural network algorithm was established. The test results showed that the construction of early-warning model is effective and feasible, which will provide a via- ble model structure to establish the effective early-warning platform.展开更多
Tea plants are susceptible to diseases during their growth.These diseases seriously affect the yield and quality of tea.The effective prevention and control of diseases requires accurate identification of diseases.Wit...Tea plants are susceptible to diseases during their growth.These diseases seriously affect the yield and quality of tea.The effective prevention and control of diseases requires accurate identification of diseases.With the development of artificial intelligence and computer vision,automatic recognition of plant diseases using image features has become feasible.As the support vector machine(SVM)is suitable for high dimension,high noise,and small sample learning,this paper uses the support vector machine learning method to realize the segmentation of disease spots of diseased tea plants.An improved Conditional Deep Convolutional Generation Adversarial Network with Gradient Penalty(C-DCGAN-GP)was used to expand the segmentation of tea plant spots.Finally,the Visual Geometry Group 16(VGG16)deep learning classification network was trained by the expanded tea lesion images to realize tea disease recognition.展开更多
Plant growth-promoting rhizobacteria(PGPR)are specialized bacterial communities inhabiting the root rhizosphere and the secretion of root exudates helps to,regulate the microbial dynamics and their interactions with t...Plant growth-promoting rhizobacteria(PGPR)are specialized bacterial communities inhabiting the root rhizosphere and the secretion of root exudates helps to,regulate the microbial dynamics and their interactions with the plants.These bacteria viz.,Agrobacterium,Arthobacter,Azospirillum,Bacillus,Burkholderia,Flavobacterium,Pseudomonas,Rhizobium,etc.,play important role in plant growth promotion.In addition,such symbiotic associations of PGPRs in the rhizospheric region also confer protection against several diseases caused by bacterial,fungal and viral pathogens.The biocontrol mechanism utilized by PGPR includes direct and indirect mechanisms direct PGPR mechanisms include the production of antibiotic,siderophore,and hydrolytic enzymes,competition for space and nutrients,and quorum sensing whereas,indirect mechanisms include rhizomicrobiome regulation via.secretion of root exudates,phytostimulation through the release of phytohormones viz.,auxin,cytokinin,gibberellic acid,1-aminocyclopropane-1-carboxylate and induction of systemic resistance through expression of antioxidant defense enzymes viz.,phenylalanine ammonia lyase(PAL),peroxidase(PO),polyphenyloxidases(PPO),superoxide dismutase(SOD),chitinase andβ-glucanases.For the suppression of plant diseases potent bio inoculants can be developed by modulating the rhizomicrobiome through rhizospheric engineering.In addition,understandings of different strategies to improve PGPR strains,their competence,colonization efficiency,persistence and its future implications should also be taken into consideration.展开更多
Across all Russia global climate change is observed. Consequences of climatic changes, undoubtedly, will be reflected in distribution of harmful organisms, their injuriousness and will demand development of new approa...Across all Russia global climate change is observed. Consequences of climatic changes, undoubtedly, will be reflected in distribution of harmful organisms, their injuriousness and will demand development of new approaches in plant protection. Over the last 10 years, the spread of cereal crop diseases in the Northwest Russia has been monitored. The purpose of researches is to find new diseases in the Northwest region of Russia. Disease progression was mainly monitored 3 or 4 times during the growing season, from germination to crop maturity. As a result in this region the new diseases were found. In 2005-2007 the causal agent of yellow leaf spot Pyrenophora tritici-repentis was found on wheat. Fusarium graminearum historically has two areas in Russia: the North Caucasus and the Far East. However, since 2003 F. graminearum appeared on the territory of the North-West of Russia. Septoria tritici became the main pathogen of wheat in the North-Western Region.. In 2013 Ramularia collo-cygni was found in Arkhangelsk region. These observations suggest that global warming of climate leads to an expansion south species pathogen to the north regions of Russia.展开更多
The detection of rice leaf disease is significant because,as an agricultural and rice exporter country,Pakistan needs to advance in production and lower the risk of diseases.In this rapid globalization era,information...The detection of rice leaf disease is significant because,as an agricultural and rice exporter country,Pakistan needs to advance in production and lower the risk of diseases.In this rapid globalization era,information technology has increased.A sensing system is mandatory to detect rice diseases using Artificial Intelligence(AI).It is being adopted in all medical and plant sciences fields to access and measure the accuracy of results and detection while lowering the risk of diseases.Deep Neural Network(DNN)is a novel technique that will help detect disease present on a rice leave because DNN is also considered a state-of-the-art solution in image detection using sensing nodes.Further in this paper,the adoption of the mixed-method approach Deep Convolutional Neural Network(Deep CNN)has assisted the research in increasing the effectiveness of the proposed method.Deep CNN is used for image recognition and is a class of deep-learning neural networks.CNN is popular and mostly used in the field of image recognition.A dataset of images with three main leaf diseases is selected for training and testing the proposed model.After the image acquisition and preprocessing process,the Deep CNN model was trained to detect and classify three rice diseases(Brown spot,bacterial blight,and blast disease).The proposed model achieved 98.3%accuracy in comparison with similar state-of-the-art techniques.展开更多
In order to provide the technological support for further implementing measures of reducing chemical pesticide to control plant diseases,the research progress on non-chemical pesticide measures to control plant diseas...In order to provide the technological support for further implementing measures of reducing chemical pesticide to control plant diseases,the research progress on non-chemical pesticide measures to control plant diseases are reviewed from the aspects of agricultural control,botanical pesticide control and microbial pesticide control,and the development prospects are proposed,including accelerating innovative research on botani-cal pesticide control such as Chinese herb extracts,and screening microbial pesticides from valuable bio-control bacteria or plant endophyte metabolites for commercial production and utilization.展开更多
The traditional method of screening plants for disease resistance phenotype is both time-consuming and costly.Genomic selection offers a potential solution to improve efficiency,but accurately predicting plant disease...The traditional method of screening plants for disease resistance phenotype is both time-consuming and costly.Genomic selection offers a potential solution to improve efficiency,but accurately predicting plant disease resistance remains a challenge.In this study,we evaluated eight different machine learning(ML)methods,including random forest classification(RFC),support vector classifier(SVC),light gradient boosting machine(lightGBM),random forest classification plus kinship(RFC_K),support vector classification plus kinship(SVC_K),light gradient boosting machine plus kinship(lightGBM_K),deep neural network genomic prediction(DNNGP),and densely connected convolutional networks(DenseNet),for predicting plant disease resistance.Our results demonstrate that the three plus kinship(K)methods developed in this study achieved high prediction accuracy.Specifically,these methods achieved accuracies of up to 95%for rice blast(RB),85%for rice black-streaked dwarf virus(RBSDV),and 85%for rice sheath blight(RSB)when trained and applied to the rice diversity panel I(RDPI).Furthermore,the plus K models performed well in predicting wheat blast(WB)and wheat stripe rust(WSR)diseases,with mean accuracies of up to 90%and 93%,respectively.To assess the generalizability of our models,we applied the trained plus K methods to predict RB disease resistance in an independent population,rice diversity panel II(RDPII).Concurrently,we evaluated the RB resistance of RDPII cultivars using spray inoculation.Comparing the predictions with the spray inoculation results,we found that the accuracy of the plus K methods reached 91%.These findings highlight the effectiveness of the plus K methods(RFC_K,SVC_K,and lightGBM_K)in accurately predicting plant disease resistance for RB,RBSDV,RSB,WB,and WSR.The methods developed in this study not only provide valuable strategies for predicting disease resistance,but also pave the way for using machine learning to streamline genome-based crop breeding.展开更多
Plants employ multifaceted mechanisms to fight with numerous pathogens in nature. Resistance (R) genes are the most effective weapons against pathogen invasion since they can specifically recognize the corresponding...Plants employ multifaceted mechanisms to fight with numerous pathogens in nature. Resistance (R) genes are the most effective weapons against pathogen invasion since they can specifically recognize the corresponding pathogen effectors or associated protein(s) to activate plant immune responses at the site of infection. Up to date, over 70 R genes have been isolated from various plant species. Most R proteins contain conserved motifs such as nucleotide-binding site (NBS), leucine-rich repeat (LRR), Toll-interleukin-1 receptor domain (TIR, homologous to cytoplasmic domains of the Drosophila Toll protein and the manamalian intefleukin-1 receptor), coiled-coil (CC) or leucine zipper (LZ) structure and protein kinase domain (PK). Recent results indicate that these domains play significant roles in R protein interactions with effector proteins from pathogens and in activating signal transduction pathways involved in innate immunity. This review highlights an overview of the recent progress in elucidating the structure, function and evolution of the isolated R genes in different plant-pathogen interaction systems.展开更多
[Objective] The antifungal bacteria of plant wilt disease was screened and identified to provide foundation for the study on bio-control preparation of plant wilt disease.[Method] Confrontation culture method was adop...[Objective] The antifungal bacteria of plant wilt disease was screened and identified to provide foundation for the study on bio-control preparation of plant wilt disease.[Method] Confrontation culture method was adopted to screen the bio-control bacteria with good antifungal effect against plant wilt disease,Biolog bacteria automatic identification system and 16S rDNA sequence analysis method were selected to identify its taxonomic status,the biological safety of the strain towards cotton and mice was also determined.[Result] 12 bacterial strains were isolated from rhizosphere of cotton.Among those strains,5 isolates showed antifungal activity against F.decemcellulare Brick,F.oxysporum f.sp.Diathi,F.oxysporum f.sp.vasinfectum.The antifungal effect of KL-1 strain against three target strains of pathogen reached 69.09%,80.78% and 78.89% respectively.Identification results of Biolog bacteria automatic identification system and 16S rDNA sequence analysis method showed that KL-1strain was Bacillus amyloliquefaciens;primary determination results of biological safety also showed that the strain KL-1 was safe and non-toxic towards cotton and mice.[Conclusion] KL-1strain of B.amyloliquefaciens had antifungal effect against several pathogens of plant wilt diseases,which was safe and non-toxic towards cotton and mice,being the bio-control strain with research and development potential.展开更多
Indian agriculture is striving to achieve sustainable intensification,the system aiming to increase agricultural yield per unit area without harming natural resources and the ecosystem.Modern farming employs technolog...Indian agriculture is striving to achieve sustainable intensification,the system aiming to increase agricultural yield per unit area without harming natural resources and the ecosystem.Modern farming employs technology to improve productivity.Early and accurate analysis and diagnosis of plant disease is very helpful in reducing plant diseases and improving plant health and food crop productivity.Plant disease experts are not available in remote areas thus there is a requirement of automatic low-cost,approachable and reliable solutions to identify the plant diseases without the laboratory inspection and expert’s opinion.Deep learning-based computer vision techniques like Convolutional Neural Network(CNN)and traditional machine learning-based image classification approaches are being applied to identify plant diseases.In this paper,the CNN model is proposed for the classification of rice and potato plant leaf diseases.Rice leaves are diagnosed with bacterial blight,blast,brown spot and tungro diseases.Potato leaf images are classified into three classes:healthy leaves,early blight and late blight diseases.Rice leaf dataset with 5932 images and 1500 potato leaf images are used in the study.The proposed CNN model was able to learn hidden patterns from the raw images and classify rice images with 99.58%accuracy and potato leaves with 97.66%accuracy.The results demonstrate that the proposed CNN model performed better when compared with other machine learning image classifiers such as Support Vector Machine(SVM),K-Nearest Neighbors(KNN),Decision Tree and Random Forest.展开更多
Nowadays, crop diseases are a crucial problem to the world’s food supplies, in a world where the population count is around 7 billion people, with more than 90% not getting access to the use of tools or features that...Nowadays, crop diseases are a crucial problem to the world’s food supplies, in a world where the population count is around 7 billion people, with more than 90% not getting access to the use of tools or features that would identify and solve the problem. At present, we live in a world dominated by technology on a significant scale, major network coverage, high-end smart-phones, as long as there are great discoveries and improvements in AI. The combination of high-end smart-phones and computer vision via Deep Learning has made possible what can be defined as “smartphone-assisted disease diagnosis”. In the area of Deep Learning, multiple architecture models have been trained, some achieving performance reaching more than 99.53% [1]. In this study, we evaluate CNN’s architectures applying transfer learning and deep feature extraction. All the features obtained will also be classified by SVM and KNN. Our work is feasible by the use of the open source Plant Village Dataset. The result obtained shows that SVM is the best classifier for leaf’s diseases detection.展开更多
Plant diseases are a major impendence to food security,and due to a lack of key infrastructure in many regions of the world,quick identification is still challenging.Harvest losses owing to illnesses are a severe prob...Plant diseases are a major impendence to food security,and due to a lack of key infrastructure in many regions of the world,quick identification is still challenging.Harvest losses owing to illnesses are a severe problem for both large farming structures and rural communities,motivating our mission.Because of the large range of diseases,identifying and classifying diseases with human eyes is not only time-consuming and labor intensive,but also prone to being mistaken with a high error rate.Deep learning-enabled breakthroughs in computer vision have cleared the road for smartphone-assisted plant disease and diagnosis.The proposed work describes a deep learning approach for detection plant disease.Therefore,we proposed a deep learning model strategy for detecting plant disease and classification of plant leaf diseases.In our research,we focused on detecting plant diseases in five crops divided into 25 different types of classes(wheat,cotton,grape,corn,and cucumbers).In this task,we used a public image database of healthy and diseased plant leaves acquired under realistic conditions.For our work,a deep convolutional neural model AlexNet and Particle Swarm optimization was trained for this task we found that the metrics(accuracy,specificity,Sensitivity,precision,and Fscore)of the tested deep learning networks achieves an accuracy of 98.83%,specificity of 98.56%,Sensitivity of 98.78%,precision of 98.67%,and F-score of 98.47%,demonstrating the feasibility of this approach.展开更多
To meet the food requirements of the seven billion people on Earth,multiple advancements in agriculture and industry have been made.The main threat to food items is from diseases and pests which affect the quality and...To meet the food requirements of the seven billion people on Earth,multiple advancements in agriculture and industry have been made.The main threat to food items is from diseases and pests which affect the quality and quantity of food.Different scientific mechanisms have been developed to protect plants and fruits from pests and diseases and to increase the quantity and quality of food.Still these mechanisms require manual efforts and human expertise to diagnose diseases.In the current decade Artificial Intelligence is used to automate different processes,including agricultural processes,such as automatic harvesting.Machine Learning techniques are becoming popular to process images and identify different objects.We can use Machine Learning algorithms for disease identification in plants for automatic harvesting that can help us to increase the quantity of the food produced and reduce crop losses.In this paper,we develop a novel Convolutional Neural Network(CNN)model that can detect diseases in peach plants and fruits.The proposed method can also locate the region of disease and help farmers to find appropriate treatments to protect peach crops.For the detection of diseases in Peaches VGG-19 architecture is utilized.For the localization of disease regions Mask R-CNN is utilized.The proposed technique is evaluated using different techniques and has demonstrated 94%accuracy.We hope that the system can help farmers to increase peach production to meet food demands.展开更多
Internet of Things(IoT)paves a new direction in the domain of smart farming and precision agriculture.Smart farming is an upgraded version of agriculture which is aimed at improving the cultivation practices and yield...Internet of Things(IoT)paves a new direction in the domain of smart farming and precision agriculture.Smart farming is an upgraded version of agriculture which is aimed at improving the cultivation practices and yield to a certain extent.In smart farming,IoT devices are linked among one another with new technologies to improve the agricultural practices.Smart farming makes use of IoT devices and contributes in effective decision making.Rice is the major food source in most of the countries.So,it becomes inevitable to detect rice plant diseases during early stages with the help of automated tools and IoT devices.The development and application of Deep Learning(DL)models in agriculture offers a way for early detection of rice diseases and increase the yield and profit.This study presents a new Convolutional Neural Network-based inception with ResNset v2 model and Optimal Weighted Extreme Learning Machine(CNNIR-OWELM)-based rice plant disease diagnosis and classification model in smart farming environment.The proposed CNNIR-OWELM method involves a set of IoT devices which capture the images of rice plants and transmit it to cloud server via internet.The CNNIROWELM method uses histogram segmentation technique to determine the affected regions in rice plant image.In addition,a DL-based inception with ResNet v2 model is engaged to extract the features.Besides,in OWELM,the Weighted Extreme Learning Machine(WELM),optimized by Flower Pollination Algorithm(FPA),is employed for classification purpose.The FPA is incorporated into WELM to determine the optimal parameters such as regularization coefficient C and kernelγ.The outcome of the presented model was validated against a benchmark image dataset and the results were compared with one another.The simulation results inferred that the presented model effectively diagnosed the disease with high sensitivity of 0.905,specificity of 0.961,and accuracy of 0.942.展开更多
The main diseases and pests in the major growing area of jujube in Shanxi Province in recent years are investigated and studied,and several main diseases and pests are described.Based on the green prevention and contr...The main diseases and pests in the major growing area of jujube in Shanxi Province in recent years are investigated and studied,and several main diseases and pests are described.Based on the green prevention and control concept of crop diseases and pests proposed by the Ministry of Agriculture of China,the prevention and control of jujube diseases and pests are expounded from the perspectives of strengthening forecast,agricultural management,biological control and chemical control,in order to provide scientific basis for green development of jujube industry.展开更多
Agricultural application of rare earth (RE) has been generalized for several decades, and it is involved in crops, vegetables and stock raising in China. However, all the researches on RE mainly focus on the fields su...Agricultural application of rare earth (RE) has been generalized for several decades, and it is involved in crops, vegetables and stock raising in China. However, all the researches on RE mainly focus on the fields such as plant physiological activity, physiological and biochemical mechanism, sanitation toxicology and environmental security. Plant protection by using RE and the induced resistance of plant against diseases were summarized. The mechanism of rare earth against plant disease is highlighted, which includes following two aspects. First, RE elements can control some phytopathogen directly and reduce its virulence to host plant. Another possibility is that RE elements can affect host plant and induce the plant to produce some resistance to disease.展开更多
Plant disease management faces ever-growing challenges due to: (i) increasing demands for total, safe and diverse foods to support the booming global population and its improving living standards; (ii) reducing p...Plant disease management faces ever-growing challenges due to: (i) increasing demands for total, safe and diverse foods to support the booming global population and its improving living standards; (ii) reducing production potential in agriculture due to competition for land in fertile areas and exhaustion of marginal arable lands; (iii) deteriorating ecology of agro-ecosystems and depletion of natural resources; and (iv) increased risk of disease epidemics resulting from agricultural intensification and monocultures. Future plant disease management should aim to strengthen food security for a stable society while simultaneously safeguarding the health of associated ecosystems and reducing dependency on natural resources. To achieve these multiple functionalities, sustainable plant disease management should place emphases on rational adaptation of resistance, avoidance, elimination and remediation strategies individually and collectively, guided by traits of specific host-pathogen associations using evolutionary ecology principles to create environmental (biotic and abiotic) conditions favorable for host growth and development while adverse to pathogen reproduction and evolution.展开更多
Agriculture plays an important role in the economy of all countries.However,plant diseases may badly affect the quality of food,production,and ultimately the economy.For plant disease detection and management,agricult...Agriculture plays an important role in the economy of all countries.However,plant diseases may badly affect the quality of food,production,and ultimately the economy.For plant disease detection and management,agriculturalists spend a huge amount of money.However,the manual detection method of plant diseases is complicated and time-consuming.Consequently,automated systems for plant disease detection using machine learning(ML)approaches are proposed.However,most of the existing ML techniques of plants diseases recognition are based on handcrafted features and they rarely deal with huge amount of input data.To address the issue,this article proposes a fully automated method for plant disease detection and recognition using deep neural networks.In the proposed method,AlexNet and VGG19 CNNs are considered as pre-trained architectures.It is capable to obtain the feature extraction of the given data with fine-tuning details.After convolutional neural network feature extraction,it selects the best subset of features through the correlation coefficient and feeds them to the number of classifiers including K-Nearest Neighbor,Support Vector Machine,Probabilistic Neural Network,Fuzzy logic,and Artificial Neural Network.The validation of the proposed method is carried out on a self-collected dataset generated through the augmentation step.The achieved average accuracy of our method is more than 96%and outperforms the recent techniques.展开更多
Sustainable forest management is essential to confront the detrimental impacts of diseases on forest ecosystems.This review highlights the potential of vegetation spectroscopy in improving the feasibility of assessing...Sustainable forest management is essential to confront the detrimental impacts of diseases on forest ecosystems.This review highlights the potential of vegetation spectroscopy in improving the feasibility of assessing forest disturbances induced by diseases in a timely and cost-effective manner.The basic concepts of vegetation spectroscopy and its application in phytopathology are first outlined then the literature on the topic is discussed.Using several optical sensors from leaf to landscape-level,a number of forest diseases characterized by variable pathogenic processes have been detected,identified and quantified in many country sites worldwide.Overall,these reviewed studies have pointed out the green and red regions of the visible spectrum,the red-edge and the early near-infrared as the spectral regions most sensitive to the disease development as they are mostly related to chlorophyll changes and symptom development.Late disease conditions particularly affect the shortwave-infrared region,mostly related to water content.This review also highlights some major issues to be addressed such as the need to explore other major forest diseases and geographic areas,to further develop hyperspectral sensors for early detection and discrimination of forest disturbances,to improve devices for remote sensing,to implement longterm monitoring,and to advance algorithms for exploitation of spectral data.Achieving of these goals will enhance the capability of vegetation spectroscopy in early detection of forest stress and in managing forest diseases.展开更多
Plant disease management plays an important role in achieving the sustainable development goals of the United Nations(UN)such as food security,human health,socio-economic improvement,resource conservation and ecologic...Plant disease management plays an important role in achieving the sustainable development goals of the United Nations(UN)such as food security,human health,socio-economic improvement,resource conservation and ecological resilience.However,technologies available are often limited due to different interests between producers and society and lacks of proper understanding of economic thresholds and the complex interactions among ecology,productivity and profitability.A comprehensive synergy and conflict evaluation of economic,sociological and ecological effects with technologies,productions and evolutionary principles as main components should be used to guide sustainable disease management that aims to mitigate crop and economic losses in the short term while maintaining functional farm ecosystem in the long term.Consequently,there should be an increased emphasis on technology development,public education and information exchange among governments,researchers,producers and consumers to broaden the options for disease management in the future.展开更多
基金Supported by a Grant from the Science and Technology Project ofYunnan Province(2006NG02)~~
文摘By studying principles and methods related to early-warning model of plant diseases and using PSO method, parameter optimization was conducted to backward propagation neural network, and a pre-warning model for plant diseases based on particle swarm and neural network algorithm was established. The test results showed that the construction of early-warning model is effective and feasible, which will provide a via- ble model structure to establish the effective early-warning platform.
基金Science and Technology Project of Jiangsu Polytechnic of Agriculture and Forestry(Project No.2021kj56)。
文摘Tea plants are susceptible to diseases during their growth.These diseases seriously affect the yield and quality of tea.The effective prevention and control of diseases requires accurate identification of diseases.With the development of artificial intelligence and computer vision,automatic recognition of plant diseases using image features has become feasible.As the support vector machine(SVM)is suitable for high dimension,high noise,and small sample learning,this paper uses the support vector machine learning method to realize the segmentation of disease spots of diseased tea plants.An improved Conditional Deep Convolutional Generation Adversarial Network with Gradient Penalty(C-DCGAN-GP)was used to expand the segmentation of tea plant spots.Finally,the Visual Geometry Group 16(VGG16)deep learning classification network was trained by the expanded tea lesion images to realize tea disease recognition.
文摘Plant growth-promoting rhizobacteria(PGPR)are specialized bacterial communities inhabiting the root rhizosphere and the secretion of root exudates helps to,regulate the microbial dynamics and their interactions with the plants.These bacteria viz.,Agrobacterium,Arthobacter,Azospirillum,Bacillus,Burkholderia,Flavobacterium,Pseudomonas,Rhizobium,etc.,play important role in plant growth promotion.In addition,such symbiotic associations of PGPRs in the rhizospheric region also confer protection against several diseases caused by bacterial,fungal and viral pathogens.The biocontrol mechanism utilized by PGPR includes direct and indirect mechanisms direct PGPR mechanisms include the production of antibiotic,siderophore,and hydrolytic enzymes,competition for space and nutrients,and quorum sensing whereas,indirect mechanisms include rhizomicrobiome regulation via.secretion of root exudates,phytostimulation through the release of phytohormones viz.,auxin,cytokinin,gibberellic acid,1-aminocyclopropane-1-carboxylate and induction of systemic resistance through expression of antioxidant defense enzymes viz.,phenylalanine ammonia lyase(PAL),peroxidase(PO),polyphenyloxidases(PPO),superoxide dismutase(SOD),chitinase andβ-glucanases.For the suppression of plant diseases potent bio inoculants can be developed by modulating the rhizomicrobiome through rhizospheric engineering.In addition,understandings of different strategies to improve PGPR strains,their competence,colonization efficiency,persistence and its future implications should also be taken into consideration.
文摘Across all Russia global climate change is observed. Consequences of climatic changes, undoubtedly, will be reflected in distribution of harmful organisms, their injuriousness and will demand development of new approaches in plant protection. Over the last 10 years, the spread of cereal crop diseases in the Northwest Russia has been monitored. The purpose of researches is to find new diseases in the Northwest region of Russia. Disease progression was mainly monitored 3 or 4 times during the growing season, from germination to crop maturity. As a result in this region the new diseases were found. In 2005-2007 the causal agent of yellow leaf spot Pyrenophora tritici-repentis was found on wheat. Fusarium graminearum historically has two areas in Russia: the North Caucasus and the Far East. However, since 2003 F. graminearum appeared on the territory of the North-West of Russia. Septoria tritici became the main pathogen of wheat in the North-Western Region.. In 2013 Ramularia collo-cygni was found in Arkhangelsk region. These observations suggest that global warming of climate leads to an expansion south species pathogen to the north regions of Russia.
基金funded by the University of Haripur,KP Pakistan Researchers Supporting Project number (PKURFL2324L33)。
文摘The detection of rice leaf disease is significant because,as an agricultural and rice exporter country,Pakistan needs to advance in production and lower the risk of diseases.In this rapid globalization era,information technology has increased.A sensing system is mandatory to detect rice diseases using Artificial Intelligence(AI).It is being adopted in all medical and plant sciences fields to access and measure the accuracy of results and detection while lowering the risk of diseases.Deep Neural Network(DNN)is a novel technique that will help detect disease present on a rice leave because DNN is also considered a state-of-the-art solution in image detection using sensing nodes.Further in this paper,the adoption of the mixed-method approach Deep Convolutional Neural Network(Deep CNN)has assisted the research in increasing the effectiveness of the proposed method.Deep CNN is used for image recognition and is a class of deep-learning neural networks.CNN is popular and mostly used in the field of image recognition.A dataset of images with three main leaf diseases is selected for training and testing the proposed model.After the image acquisition and preprocessing process,the Deep CNN model was trained to detect and classify three rice diseases(Brown spot,bacterial blight,and blast disease).The proposed model achieved 98.3%accuracy in comparison with similar state-of-the-art techniques.
基金Supported by Open Fund Project of Key Laboratory of Plant Nutrition and Fertilizer,Ministry of Agriculture and Rural Affairs"Study on Precise Nutrient Demand Model of Corn"(KLPNF-2018-4)
文摘In order to provide the technological support for further implementing measures of reducing chemical pesticide to control plant diseases,the research progress on non-chemical pesticide measures to control plant diseases are reviewed from the aspects of agricultural control,botanical pesticide control and microbial pesticide control,and the development prospects are proposed,including accelerating innovative research on botani-cal pesticide control such as Chinese herb extracts,and screening microbial pesticides from valuable bio-control bacteria or plant endophyte metabolites for commercial production and utilization.
基金supported by the National Natural Science Foundation of China(32261143468)the National Key Research and Development(R&D)Program of China(2021YFC2600400)+1 种基金the Seed Industry Revitalization Project of Jiangsu Province(JBGS(2021)001)the Project of Zhongshan Biological Breeding Laboratory(BM2022008-02)。
文摘The traditional method of screening plants for disease resistance phenotype is both time-consuming and costly.Genomic selection offers a potential solution to improve efficiency,but accurately predicting plant disease resistance remains a challenge.In this study,we evaluated eight different machine learning(ML)methods,including random forest classification(RFC),support vector classifier(SVC),light gradient boosting machine(lightGBM),random forest classification plus kinship(RFC_K),support vector classification plus kinship(SVC_K),light gradient boosting machine plus kinship(lightGBM_K),deep neural network genomic prediction(DNNGP),and densely connected convolutional networks(DenseNet),for predicting plant disease resistance.Our results demonstrate that the three plus kinship(K)methods developed in this study achieved high prediction accuracy.Specifically,these methods achieved accuracies of up to 95%for rice blast(RB),85%for rice black-streaked dwarf virus(RBSDV),and 85%for rice sheath blight(RSB)when trained and applied to the rice diversity panel I(RDPI).Furthermore,the plus K models performed well in predicting wheat blast(WB)and wheat stripe rust(WSR)diseases,with mean accuracies of up to 90%and 93%,respectively.To assess the generalizability of our models,we applied the trained plus K methods to predict RB disease resistance in an independent population,rice diversity panel II(RDPII).Concurrently,we evaluated the RB resistance of RDPII cultivars using spray inoculation.Comparing the predictions with the spray inoculation results,we found that the accuracy of the plus K methods reached 91%.These findings highlight the effectiveness of the plus K methods(RFC_K,SVC_K,and lightGBM_K)in accurately predicting plant disease resistance for RB,RBSDV,RSB,WB,and WSR.The methods developed in this study not only provide valuable strategies for predicting disease resistance,but also pave the way for using machine learning to streamline genome-based crop breeding.
基金This work was supported by grants from the Natural Science Foundation of China (No. 30470990, No. 30571063)the"948"Project from the Minister of Agriculture in China, the"973"Project from the Minister of Science and Technology (No.2006CB101904)+1 种基金Hunan Natural Science Foundation (No.06JJ10006)Scientific Research Fund of Hunan Provincial Education department (No.04A024).
文摘Plants employ multifaceted mechanisms to fight with numerous pathogens in nature. Resistance (R) genes are the most effective weapons against pathogen invasion since they can specifically recognize the corresponding pathogen effectors or associated protein(s) to activate plant immune responses at the site of infection. Up to date, over 70 R genes have been isolated from various plant species. Most R proteins contain conserved motifs such as nucleotide-binding site (NBS), leucine-rich repeat (LRR), Toll-interleukin-1 receptor domain (TIR, homologous to cytoplasmic domains of the Drosophila Toll protein and the manamalian intefleukin-1 receptor), coiled-coil (CC) or leucine zipper (LZ) structure and protein kinase domain (PK). Recent results indicate that these domains play significant roles in R protein interactions with effector proteins from pathogens and in activating signal transduction pathways involved in innate immunity. This review highlights an overview of the recent progress in elucidating the structure, function and evolution of the isolated R genes in different plant-pathogen interaction systems.
基金Supported by Natural Science Research Project in Universities in Jiangsu Province(10KJD210004)"Blue Project" Excellent Young Teacher Training Project in Universities in Jiangsu Province~~
文摘[Objective] The antifungal bacteria of plant wilt disease was screened and identified to provide foundation for the study on bio-control preparation of plant wilt disease.[Method] Confrontation culture method was adopted to screen the bio-control bacteria with good antifungal effect against plant wilt disease,Biolog bacteria automatic identification system and 16S rDNA sequence analysis method were selected to identify its taxonomic status,the biological safety of the strain towards cotton and mice was also determined.[Result] 12 bacterial strains were isolated from rhizosphere of cotton.Among those strains,5 isolates showed antifungal activity against F.decemcellulare Brick,F.oxysporum f.sp.Diathi,F.oxysporum f.sp.vasinfectum.The antifungal effect of KL-1 strain against three target strains of pathogen reached 69.09%,80.78% and 78.89% respectively.Identification results of Biolog bacteria automatic identification system and 16S rDNA sequence analysis method showed that KL-1strain was Bacillus amyloliquefaciens;primary determination results of biological safety also showed that the strain KL-1 was safe and non-toxic towards cotton and mice.[Conclusion] KL-1strain of B.amyloliquefaciens had antifungal effect against several pathogens of plant wilt diseases,which was safe and non-toxic towards cotton and mice,being the bio-control strain with research and development potential.
基金This research supported by KAU Scientific Endowment,King Abdulaziz University,Jeddah,Saudi Arabia under Grant Number KAU 2020/251.
文摘Indian agriculture is striving to achieve sustainable intensification,the system aiming to increase agricultural yield per unit area without harming natural resources and the ecosystem.Modern farming employs technology to improve productivity.Early and accurate analysis and diagnosis of plant disease is very helpful in reducing plant diseases and improving plant health and food crop productivity.Plant disease experts are not available in remote areas thus there is a requirement of automatic low-cost,approachable and reliable solutions to identify the plant diseases without the laboratory inspection and expert’s opinion.Deep learning-based computer vision techniques like Convolutional Neural Network(CNN)and traditional machine learning-based image classification approaches are being applied to identify plant diseases.In this paper,the CNN model is proposed for the classification of rice and potato plant leaf diseases.Rice leaves are diagnosed with bacterial blight,blast,brown spot and tungro diseases.Potato leaf images are classified into three classes:healthy leaves,early blight and late blight diseases.Rice leaf dataset with 5932 images and 1500 potato leaf images are used in the study.The proposed CNN model was able to learn hidden patterns from the raw images and classify rice images with 99.58%accuracy and potato leaves with 97.66%accuracy.The results demonstrate that the proposed CNN model performed better when compared with other machine learning image classifiers such as Support Vector Machine(SVM),K-Nearest Neighbors(KNN),Decision Tree and Random Forest.
文摘Nowadays, crop diseases are a crucial problem to the world’s food supplies, in a world where the population count is around 7 billion people, with more than 90% not getting access to the use of tools or features that would identify and solve the problem. At present, we live in a world dominated by technology on a significant scale, major network coverage, high-end smart-phones, as long as there are great discoveries and improvements in AI. The combination of high-end smart-phones and computer vision via Deep Learning has made possible what can be defined as “smartphone-assisted disease diagnosis”. In the area of Deep Learning, multiple architecture models have been trained, some achieving performance reaching more than 99.53% [1]. In this study, we evaluate CNN’s architectures applying transfer learning and deep feature extraction. All the features obtained will also be classified by SVM and KNN. Our work is feasible by the use of the open source Plant Village Dataset. The result obtained shows that SVM is the best classifier for leaf’s diseases detection.
文摘Plant diseases are a major impendence to food security,and due to a lack of key infrastructure in many regions of the world,quick identification is still challenging.Harvest losses owing to illnesses are a severe problem for both large farming structures and rural communities,motivating our mission.Because of the large range of diseases,identifying and classifying diseases with human eyes is not only time-consuming and labor intensive,but also prone to being mistaken with a high error rate.Deep learning-enabled breakthroughs in computer vision have cleared the road for smartphone-assisted plant disease and diagnosis.The proposed work describes a deep learning approach for detection plant disease.Therefore,we proposed a deep learning model strategy for detecting plant disease and classification of plant leaf diseases.In our research,we focused on detecting plant diseases in five crops divided into 25 different types of classes(wheat,cotton,grape,corn,and cucumbers).In this task,we used a public image database of healthy and diseased plant leaves acquired under realistic conditions.For our work,a deep convolutional neural model AlexNet and Particle Swarm optimization was trained for this task we found that the metrics(accuracy,specificity,Sensitivity,precision,and Fscore)of the tested deep learning networks achieves an accuracy of 98.83%,specificity of 98.56%,Sensitivity of 98.78%,precision of 98.67%,and F-score of 98.47%,demonstrating the feasibility of this approach.
基金The authors received funding for this study from Taif University Researchers Supporting Project No.(TURSP-2020/254),Taif University,Taif,Saudi Arabia.
文摘To meet the food requirements of the seven billion people on Earth,multiple advancements in agriculture and industry have been made.The main threat to food items is from diseases and pests which affect the quality and quantity of food.Different scientific mechanisms have been developed to protect plants and fruits from pests and diseases and to increase the quantity and quality of food.Still these mechanisms require manual efforts and human expertise to diagnose diseases.In the current decade Artificial Intelligence is used to automate different processes,including agricultural processes,such as automatic harvesting.Machine Learning techniques are becoming popular to process images and identify different objects.We can use Machine Learning algorithms for disease identification in plants for automatic harvesting that can help us to increase the quantity of the food produced and reduce crop losses.In this paper,we develop a novel Convolutional Neural Network(CNN)model that can detect diseases in peach plants and fruits.The proposed method can also locate the region of disease and help farmers to find appropriate treatments to protect peach crops.For the detection of diseases in Peaches VGG-19 architecture is utilized.For the localization of disease regions Mask R-CNN is utilized.The proposed technique is evaluated using different techniques and has demonstrated 94%accuracy.We hope that the system can help farmers to increase peach production to meet food demands.
文摘Internet of Things(IoT)paves a new direction in the domain of smart farming and precision agriculture.Smart farming is an upgraded version of agriculture which is aimed at improving the cultivation practices and yield to a certain extent.In smart farming,IoT devices are linked among one another with new technologies to improve the agricultural practices.Smart farming makes use of IoT devices and contributes in effective decision making.Rice is the major food source in most of the countries.So,it becomes inevitable to detect rice plant diseases during early stages with the help of automated tools and IoT devices.The development and application of Deep Learning(DL)models in agriculture offers a way for early detection of rice diseases and increase the yield and profit.This study presents a new Convolutional Neural Network-based inception with ResNset v2 model and Optimal Weighted Extreme Learning Machine(CNNIR-OWELM)-based rice plant disease diagnosis and classification model in smart farming environment.The proposed CNNIR-OWELM method involves a set of IoT devices which capture the images of rice plants and transmit it to cloud server via internet.The CNNIROWELM method uses histogram segmentation technique to determine the affected regions in rice plant image.In addition,a DL-based inception with ResNet v2 model is engaged to extract the features.Besides,in OWELM,the Weighted Extreme Learning Machine(WELM),optimized by Flower Pollination Algorithm(FPA),is employed for classification purpose.The FPA is incorporated into WELM to determine the optimal parameters such as regularization coefficient C and kernelγ.The outcome of the presented model was validated against a benchmark image dataset and the results were compared with one another.The simulation results inferred that the presented model effectively diagnosed the disease with high sensitivity of 0.905,specificity of 0.961,and accuracy of 0.942.
基金Sponsored by Young and Middle-aged Innovative Talents Training Program of Universities and Colleges in Tianjin (J01009030709)Enterprise Science and Technology Commissioner Project of Tianjin (20YDTPJC01330)+1 种基金Agricultural Science and Technology Project of Baodi District (201918)Cultivation Project of Hetian Polytechnic Horizontal Joint Project of Yisheng Orchard in Hetian City。
文摘The main diseases and pests in the major growing area of jujube in Shanxi Province in recent years are investigated and studied,and several main diseases and pests are described.Based on the green prevention and control concept of crop diseases and pests proposed by the Ministry of Agriculture of China,the prevention and control of jujube diseases and pests are expounded from the perspectives of strengthening forecast,agricultural management,biological control and chemical control,in order to provide scientific basis for green development of jujube industry.
文摘Agricultural application of rare earth (RE) has been generalized for several decades, and it is involved in crops, vegetables and stock raising in China. However, all the researches on RE mainly focus on the fields such as plant physiological activity, physiological and biochemical mechanism, sanitation toxicology and environmental security. Plant protection by using RE and the induced resistance of plant against diseases were summarized. The mechanism of rare earth against plant disease is highlighted, which includes following two aspects. First, RE elements can control some phytopathogen directly and reduce its virulence to host plant. Another possibility is that RE elements can affect host plant and induce the plant to produce some resistance to disease.
基金supported by the Fujian Technology Plan Project, China (2012N4001)the National Natural Science Foundation of China (U1405213)the Ministry of Science and Technology of National 973 Program of China (2014CB160315)
文摘Plant disease management faces ever-growing challenges due to: (i) increasing demands for total, safe and diverse foods to support the booming global population and its improving living standards; (ii) reducing production potential in agriculture due to competition for land in fertile areas and exhaustion of marginal arable lands; (iii) deteriorating ecology of agro-ecosystems and depletion of natural resources; and (iv) increased risk of disease epidemics resulting from agricultural intensification and monocultures. Future plant disease management should aim to strengthen food security for a stable society while simultaneously safeguarding the health of associated ecosystems and reducing dependency on natural resources. To achieve these multiple functionalities, sustainable plant disease management should place emphases on rational adaptation of resistance, avoidance, elimination and remediation strategies individually and collectively, guided by traits of specific host-pathogen associations using evolutionary ecology principles to create environmental (biotic and abiotic) conditions favorable for host growth and development while adverse to pathogen reproduction and evolution.
基金the MSIT(Ministry of Science and ICT),Korea,under the ITRC(Information Technology Research Center)support program(IITP-2020-2016-0-00312)supervised by the IITP(Institute for Information&Communications Technology Planning&Evaluation)in part by the MSIP(Ministry of Science,ICT&Future Planning),Korea,under the National Program for Excellence in SW)(2015-0-00938)supervised by the IITP(Institute for Information&communications Technology Planning&Evaluation).
文摘Agriculture plays an important role in the economy of all countries.However,plant diseases may badly affect the quality of food,production,and ultimately the economy.For plant disease detection and management,agriculturalists spend a huge amount of money.However,the manual detection method of plant diseases is complicated and time-consuming.Consequently,automated systems for plant disease detection using machine learning(ML)approaches are proposed.However,most of the existing ML techniques of plants diseases recognition are based on handcrafted features and they rarely deal with huge amount of input data.To address the issue,this article proposes a fully automated method for plant disease detection and recognition using deep neural networks.In the proposed method,AlexNet and VGG19 CNNs are considered as pre-trained architectures.It is capable to obtain the feature extraction of the given data with fine-tuning details.After convolutional neural network feature extraction,it selects the best subset of features through the correlation coefficient and feeds them to the number of classifiers including K-Nearest Neighbor,Support Vector Machine,Probabilistic Neural Network,Fuzzy logic,and Artificial Neural Network.The validation of the proposed method is carried out on a self-collected dataset generated through the augmentation step.The achieved average accuracy of our method is more than 96%and outperforms the recent techniques.
基金funding provided by Universitàdi Pisa within the CRUI-CARE Agreement。
文摘Sustainable forest management is essential to confront the detrimental impacts of diseases on forest ecosystems.This review highlights the potential of vegetation spectroscopy in improving the feasibility of assessing forest disturbances induced by diseases in a timely and cost-effective manner.The basic concepts of vegetation spectroscopy and its application in phytopathology are first outlined then the literature on the topic is discussed.Using several optical sensors from leaf to landscape-level,a number of forest diseases characterized by variable pathogenic processes have been detected,identified and quantified in many country sites worldwide.Overall,these reviewed studies have pointed out the green and red regions of the visible spectrum,the red-edge and the early near-infrared as the spectral regions most sensitive to the disease development as they are mostly related to chlorophyll changes and symptom development.Late disease conditions particularly affect the shortwave-infrared region,mostly related to water content.This review also highlights some major issues to be addressed such as the need to explore other major forest diseases and geographic areas,to further develop hyperspectral sensors for early detection and discrimination of forest disturbances,to improve devices for remote sensing,to implement longterm monitoring,and to advance algorithms for exploitation of spectral data.Achieving of these goals will enhance the capability of vegetation spectroscopy in early detection of forest stress and in managing forest diseases.
基金This work was supported by the National Natural Science Foundation of China(72073028)the Natural Science Foundation of Fujian Province of China(2018J01707).
文摘Plant disease management plays an important role in achieving the sustainable development goals of the United Nations(UN)such as food security,human health,socio-economic improvement,resource conservation and ecological resilience.However,technologies available are often limited due to different interests between producers and society and lacks of proper understanding of economic thresholds and the complex interactions among ecology,productivity and profitability.A comprehensive synergy and conflict evaluation of economic,sociological and ecological effects with technologies,productions and evolutionary principles as main components should be used to guide sustainable disease management that aims to mitigate crop and economic losses in the short term while maintaining functional farm ecosystem in the long term.Consequently,there should be an increased emphasis on technology development,public education and information exchange among governments,researchers,producers and consumers to broaden the options for disease management in the future.