期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Estimation of Total Phenolic Compounds and Non-Targeted Volatile Metabolomics in Leaf Tissues of American Chestnut (<i>Castanea dentata</i>), Chinese Chestnut (<i>Castanea mollissima</i>) and the Backcross Breeding Generations
1
作者 Jinyan She Chathuri U. G. Mohottige +5 位作者 Mary King Yi Jiang Matt Mlsna Stacy Clark Richard Baird Todd Mlsna 《Journal of Agricultural Chemistry and Environment》 2021年第2期222-256,共35页
The American chestnut (<em>Castanea dentata</em>) was once a dominant tree species in the Appalachian Mountains and played a critical role in the ecological system. However, it was nearly eliminated by che... The American chestnut (<em>Castanea dentata</em>) was once a dominant tree species in the Appalachian Mountains and played a critical role in the ecological system. However, it was nearly eliminated by chestnut blight caused by the Ascomycetous fungus <em>Cryphonectria parasitica</em>. Identification of compounds specific to species and backcross hybrids may help further refine disease resistance breeding and testing. Phenolic compounds produced by plants are significant to their defense mechanisms against fungal pathogens. Therefore, an analytical platform has been developed to estimate the total phenolic content in leaf tissues of the American chestnut, Chinese chestnut (<em>Castanea mollissima</em>), and their backcross breeding generations (B<sub>3</sub>F<sub>2</sub> and B<sub>3</sub>F<sub>3</sub>) using the Folin-Ciocalteu reagent assay with UV/Vis spectrophotometry which may be used to predict blight resistance. Adsorption (765 nm) results from leaf tissue extraction in methanol/water (95%:5% v/v) and pH 2, show that the variations among these four tree species are significant (ANOVA p = 2.3 × 10<sup>-7</sup>). The kinetics of phenolic compound solid-liquid extraction was elaborated using Peleg, second order, Elovich, and power law models. In addition, extensive analysis using headspace solid phase microextraction (SPME) gas chromatography and mass spectrometry was conducted to identify volatile organic compounds (VOCs) from the leaf of American chestnut, Chinese chestnut, and their backcross hybrids B<sub>3</sub>F<sub>2</sub> and B<sub>3</sub>F<sub>3</sub>. A total of 67 VOCs were identified among all chestnut types. Many of the metabolites associated with the Chinese chestnut have been reported to have antifungal properties, whereas the native and hybrid American chestnut metabolites have not. Most of the antifungal metabolites showed the strongest efficacy towards the Ascomycota phylum. A partial least squares discriminant analysis (PLS-DA) model (R<sup>2</sup>X = 0.884, R<sup>2</sup>Y = 0.917, Q<sup>2</sup> = 0.584) differentiated chestnut species and hybrids within the first five principal component (PCs). 展开更多
关键词 Total Phenolic Compounds plant vocs HS-SPME-GC/MS Chemometric Analysis Chestnut Tree Hybrids
下载PDF
Characterization of odorous charge and photochemical reactivity of VOC emissions from a full-scale food waste treatment plant in China 被引量:7
2
作者 Zhe Ni Jianguo Liu +3 位作者 Mingying Song Xiaowei Wang Lianhai Ren Xin Kong 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第3期34-44,共11页
Food waste treatment plants (FWTPs) are usually associated with odorous nuisance and health risks, which are partially caused by volatile organic compound (VOC) emissions. This study investigated the VOC emissions... Food waste treatment plants (FWTPs) are usually associated with odorous nuisance and health risks, which are partially caused by volatile organic compound (VOC) emissions. This study investigated the VOC emissions from a selected full-scale FWTP in China. The feedstock used in this plant was mainly collected from local restaurants. For a year, the FWTP was closely monitored on specific days in each season. Four major indoor treatment units of the plant, including the storage room, sorting/crushing room, hydrothermal hydrolysis unit, and aerobic fermentation unit, were chosen as the monitoring locations. The highest mean concentration of total VOC emissions was observed in the aerobic fermentation unit at 21,748.2-31,283.3 μg/m^3, followed by the hydrothermal hydrolysis unit at 10,798.1-23,144.4 μg/m^3. The detected VOC families included biogenic compounds (oxygenated compounds, hydrocarbons, terpenes, and organosulfur compounds) and abiogenic compounds (aromatic hydrocarbons and halocarbons). Oxygenated compounds, particularly alcohols, were the most abundant compounds in all samples. With the use of odor index analysis and principal components analysis, the hydrothermal hydrolysis and aerobic fermentation units were clearly distinguished from the pre-treatment units, as characterized by their higher contributions to odorous nuisance. Methanthiol was the dominant odorant in the hydrothermal hydrolysis unit, whereas aldehyde was the dominant odorant in the aerobic fermentation unit. Terpenes, specifically limonene, had the highest level of propylene equivalent concentration during the monitoring periods. This concentration can contribute to the increase in the atmospheric reactivity and ozone formation potential in the surrounding air. 展开更多
关键词 Food waste treatment plant In-situ monitoring VOC emissions Odorous charge Photochemical reactivity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部