This paper summarized the possible physiological mechanism by which anthocyanins strengthen the tolerance of plants to drought. Drought stress can in-duce plant cel s to synthesize and accumulate anthocyanins. The pho...This paper summarized the possible physiological mechanism by which anthocyanins strengthen the tolerance of plants to drought. Drought stress can in-duce plant cel s to synthesize and accumulate anthocyanins. The photochemical properties, subcel ular accumulation sites and spatial distributions in plant organs and tissues of anthocyanins determine their function of strengthening plant tolerance, which is realized by three possible physiological mechanisms: (1) anthocyanins and their chelated metal ions can optimize the osmoregulation ability of the plant cel s by directly acting as the osmoregulation substances of the cel s, (2) anthocyanins with suitable spatial locations can reduce the photoinhibition of the plants under drought stresses, (3) anthocyanins can effectively maintain and improve the active oxygen-scavenging capacity of the plant cel s under drought conditions. Therein, that the anthocyanins enhance the antioxidant capacity of the plant cel s under drought stresses is probably the main reason for the anthocyanins to strengthen the drought tolerance of plants. This review could provide a reference for the mechanism re-search of the drought resistance and the breeding of the drought-resistant cultivars for the plants holding the ability to synthesize and accumulate anthocyanins.展开更多
Plants were collected and prepared for chemical analysis, total phenolics, anthocyanins concentrations, and free radical scavenging activity. Results showed that, protein concentration of Malva parviflora (22.9%) was ...Plants were collected and prepared for chemical analysis, total phenolics, anthocyanins concentrations, and free radical scavenging activity. Results showed that, protein concentration of Malva parviflora (22.9%) was the highest among the plants. Ruta chalepensis had high levels of fat and carbohydrates (4.2% and 51.7%, respectively), but had the lowest level of ash (8.7%). Mineral concentrations varied and found to have appreciable amounts of Ca, Na, K, Cu, Fe, Mg, Mn, Zn and P. Total phenolic ranged from 163.1 (Tetragonolobus palaestinus) to 1328.8 mg GAE/100g (Ruta chalepensis). Anthocyanins ranged between 18.1 (Gundelia tournefortii) and 100.1 mg/100g (Rumex acetosella). These plants differed in free radical scavenging activity. It was concluded that these plants could be considered as natural sources for antioxidants and valuable natural resources as a new addition to the diet of inhabitants.展开更多
基金Supported by the National Natural Science Foundation of China(31060045,31260091)~~
文摘This paper summarized the possible physiological mechanism by which anthocyanins strengthen the tolerance of plants to drought. Drought stress can in-duce plant cel s to synthesize and accumulate anthocyanins. The photochemical properties, subcel ular accumulation sites and spatial distributions in plant organs and tissues of anthocyanins determine their function of strengthening plant tolerance, which is realized by three possible physiological mechanisms: (1) anthocyanins and their chelated metal ions can optimize the osmoregulation ability of the plant cel s by directly acting as the osmoregulation substances of the cel s, (2) anthocyanins with suitable spatial locations can reduce the photoinhibition of the plants under drought stresses, (3) anthocyanins can effectively maintain and improve the active oxygen-scavenging capacity of the plant cel s under drought conditions. Therein, that the anthocyanins enhance the antioxidant capacity of the plant cel s under drought stresses is probably the main reason for the anthocyanins to strengthen the drought tolerance of plants. This review could provide a reference for the mechanism re-search of the drought resistance and the breeding of the drought-resistant cultivars for the plants holding the ability to synthesize and accumulate anthocyanins.
文摘Plants were collected and prepared for chemical analysis, total phenolics, anthocyanins concentrations, and free radical scavenging activity. Results showed that, protein concentration of Malva parviflora (22.9%) was the highest among the plants. Ruta chalepensis had high levels of fat and carbohydrates (4.2% and 51.7%, respectively), but had the lowest level of ash (8.7%). Mineral concentrations varied and found to have appreciable amounts of Ca, Na, K, Cu, Fe, Mg, Mn, Zn and P. Total phenolic ranged from 163.1 (Tetragonolobus palaestinus) to 1328.8 mg GAE/100g (Ruta chalepensis). Anthocyanins ranged between 18.1 (Gundelia tournefortii) and 100.1 mg/100g (Rumex acetosella). These plants differed in free radical scavenging activity. It was concluded that these plants could be considered as natural sources for antioxidants and valuable natural resources as a new addition to the diet of inhabitants.