The effect of seed presoaking with different concentrations of growth bio-regulators (indole acetic acid, gibberellic acid and kinetin) on productivity and some biochemical and physiological aspects of yielded seeds o...The effect of seed presoaking with different concentrations of growth bio-regulators (indole acetic acid, gibberellic acid and kinetin) on productivity and some biochemical and physiological aspects of yielded seeds of cowpea (Vigna sinensis L.) was investigated. Generally, application of growth regulators stimulated yield and yield quality of cowpea plants as compared to control plants through inducing a massive increase in number of pods/plants, seed biomass, pod length and number of seeds. In addition, results of this study showed that these growth regulators increased protein content and total soluble sugars in cowpea yielded seeds. Finally, it is evident from the present data that application of kinetin appeared to be the most effective hormone in stimulated productivity endogenous hormones and biochemical aspects in yielded seeds of cowpea plants.展开更多
An alteration in plant phenotypes assisted by their responses to the environmental stimuli (=tropism) has been fundamental to understand the “plant sensitivity ” that plays a crucial role in plants’ adaptive succes...An alteration in plant phenotypes assisted by their responses to the environmental stimuli (=tropism) has been fundamental to understand the “plant sensitivity ” that plays a crucial role in plants’ adaptive success. Plants succeed through the deployment of moderators controlling polar auxin-transport determining organ bending. Stimulus-specific effectors can be synthesized by the outer peripheral cells at the bending sites where they target highly conserved cellular processes and potentially persuade the plant sensitivity at large. Remarkably, the peripheral cells require different time-intervals to achieve the threshold expression-levels of stimulus-specific molecular responders. After stimulus perception, tropic curvatures (especially at growing root-apices) are duly coordinated via integrated chemical and electrical signalling which is the key to cellular communications. Thus, the acquired phenotypic alterations are the perplexed outcome of plant’s developmental pace, complemented by the sensitivity. A novel aspect of this study is to advance our understanding of plant developmental-programming and the extent of plant-sensitivity, determining the plant growth and their future applications.展开更多
Twelve new Schiff bases of thiadiazole have been synthesized for the first time. Their physical constants, UV, IR, 1H NMR and elementary analysis were originally characterized, biological activity were originally stud...Twelve new Schiff bases of thiadiazole have been synthesized for the first time. Their physical constants, UV, IR, 1H NMR and elementary analysis were originally characterized, biological activity were originally studied. It is found from the results of biological activity tests that some compounds have a remarkable activity on plant growth hormone. Compounds Ⅲa and Ⅲk have a good activity on cytokinin, compounds Ⅲe and Ⅲj and Ⅲl have an excellent activity on auxin.展开更多
文摘The effect of seed presoaking with different concentrations of growth bio-regulators (indole acetic acid, gibberellic acid and kinetin) on productivity and some biochemical and physiological aspects of yielded seeds of cowpea (Vigna sinensis L.) was investigated. Generally, application of growth regulators stimulated yield and yield quality of cowpea plants as compared to control plants through inducing a massive increase in number of pods/plants, seed biomass, pod length and number of seeds. In addition, results of this study showed that these growth regulators increased protein content and total soluble sugars in cowpea yielded seeds. Finally, it is evident from the present data that application of kinetin appeared to be the most effective hormone in stimulated productivity endogenous hormones and biochemical aspects in yielded seeds of cowpea plants.
文摘An alteration in plant phenotypes assisted by their responses to the environmental stimuli (=tropism) has been fundamental to understand the “plant sensitivity ” that plays a crucial role in plants’ adaptive success. Plants succeed through the deployment of moderators controlling polar auxin-transport determining organ bending. Stimulus-specific effectors can be synthesized by the outer peripheral cells at the bending sites where they target highly conserved cellular processes and potentially persuade the plant sensitivity at large. Remarkably, the peripheral cells require different time-intervals to achieve the threshold expression-levels of stimulus-specific molecular responders. After stimulus perception, tropic curvatures (especially at growing root-apices) are duly coordinated via integrated chemical and electrical signalling which is the key to cellular communications. Thus, the acquired phenotypic alterations are the perplexed outcome of plant’s developmental pace, complemented by the sensitivity. A novel aspect of this study is to advance our understanding of plant developmental-programming and the extent of plant-sensitivity, determining the plant growth and their future applications.
文摘Twelve new Schiff bases of thiadiazole have been synthesized for the first time. Their physical constants, UV, IR, 1H NMR and elementary analysis were originally characterized, biological activity were originally studied. It is found from the results of biological activity tests that some compounds have a remarkable activity on plant growth hormone. Compounds Ⅲa and Ⅲk have a good activity on cytokinin, compounds Ⅲe and Ⅲj and Ⅲl have an excellent activity on auxin.