In this work,particulate matter(PM) emissions from a large two-stroke,low-speed marine diesel engine were investigated when the engine was operated with low-sulfur heavy fuel oil(HFO) at various loads.Particle samples...In this work,particulate matter(PM) emissions from a large two-stroke,low-speed marine diesel engine were investigated when the engine was operated with low-sulfur heavy fuel oil(HFO) at various loads.Particle samples were collected in situ from the engine exhaust to determine the detailed physical and chemical properties.The nanostructure and morphology of the nanoparticles were analyzed using transmission electron microscopy images(TEM).The results show that volatile organic carbon(OC) accounts for more than 80% in the HFO particles and leads to an increase in particle size.The thermodynamic conditions of a low-speed engine favor the behavior of capturing the soluble organic components.A large number of spherical char HFO particles with aerodynamic diameters of 0.2 μm-0.5 μm and a suspected inner metal core were detected.The two peak aerodynamic diameters of the HFO nanoparticles are 15 nm and 86 nm.The morphological differences among the HFO nanoparticles in varied engine conditions represent the formation process from primary nascent particles to mature graphitized particles caused by thermodynamics.The above study will be valuable for understanding the characteristics of PM emissions from low-sulfur HFO to achieve the ship PM emissions reduction target.展开更多
In efforts to overcome an foreseeable energy crisis predicated on limited oil and gas supplies, reserves; economic variations facing the world, and of course the environmental side effects of fossil fuels, an urgent n...In efforts to overcome an foreseeable energy crisis predicated on limited oil and gas supplies, reserves; economic variations facing the world, and of course the environmental side effects of fossil fuels, an urgent need for energy sources that provide sustainable, safe and economic supplies for the world is imperative. The current fossil fuel energy system must be improved to ensure a better and cleaner transportation future for the world. Despite the fact that the marine transportation sector consumes only 5% of global petroleum production; it is responsible for 15% of the world NOx and SOx emissions. These figures must be the engine that powers the scientific research worldwide to develop new solutions for a very old energy problem. In this paper, the most effective types of marine power plants were discussed. The history of the development of each type was presented first and the technical aspects were discussed second. Also, the fuel ceils as a new type of power plants used in marine sector were briefed to give a complete overview of the past, present and future of the marine power plants development. Based on the increased worldwide concerns regarding harmful emissions, many researchers have introduced solutions to this problem, including the adoption of new cleaner fuels. This paper was guided using the same trend and by implementing the hydrogen as fuel for marine internal combustion engine, gas turbines, and fuel cells.展开更多
Scarcity of conventional petroleum resources has promoted research in alternative fuels for internal combustion engines.Among various possible options,fuels derived from triglycerides(vegetable oils/animal fats)are pr...Scarcity of conventional petroleum resources has promoted research in alternative fuels for internal combustion engines.Among various possible options,fuels derived from triglycerides(vegetable oils/animal fats)are promising for the substitution of fossil diesel fuel.Vegetable oils poses some characteristics like durability,high viscosity and low volatility compared to mineral diesel fuel.In the present work,experiments were designed to study the effect of reducing kusum and karanja oil’s viscosity by preheating the fuel,using a shell and tube heat exchanger.The acquired engine data were analyzed for various parameters such as brake thermal efficiency,brake specific energy consumption(BSEC),emission of exhaust gases like CO,CO_(2),HC and NO_(x).In operation,the engine performance with kusum and karanja oil(preheated),was found to be very close to that of diesel.The preheated oil's performances were found to be slightly inferior in efficiency due to low heating value.The performance of karanja oil was found better than kusum oil in all respects.展开更多
Honne oil(tamanu)(H),a non-edible vegetable oil is native for northwards of Northern Marianas islands and the Ryukyu Islands in southern Japan and westward throughout Polynesia.It has remained as an untapped new possi...Honne oil(tamanu)(H),a non-edible vegetable oil is native for northwards of Northern Marianas islands and the Ryukyu Islands in southern Japan and westward throughout Polynesia.It has remained as an untapped new possible source of alternative fuel that can be used as diesel engine fuel.Literature pertaining to use of vegetable oil in diesel engine with kerosene and dimethyl carbonate(DMC)is scarce.The present research is aimed to investigate experimentally the performance,exhaust emission and combustion characteristics of a direct injection(DI)diesel engine,typically used in agricultural sector,over the entire load range,when fuelled with neat diesel(ND)and blends of diesel fuel(D)/DMC/H/kerosene(K).DMC/D/H/K blends have a potential to improve the performance and emissions and to be an alternative to ND.Experiments have been conducted when fuelled with H20(20%H+80%D),HK(20%H+40%K+40%D)and HKD5(20%H+40%K+35D+5%DMC)to HKD15 in steps of 5%DMC keeping H and K percentages constant.The emissions(CO,HC and smoke density(SD))of fuel blend HKD15 are found to be lowest,with SD dropping significantly.The NOx level is slightly higher with HKD5 to HKD15 as compared to ND.The brake thermal efficiency of HKD5 to HKD15 is same and it is higher than that of ND.There is a good trade off between NOx and SD.Peak cylinder pressure and premixed combustion phase increases as DMC content increase.展开更多
基金supported by the Science & Technology Commission of Shanghai MunicipalityShanghai Engineering Research Center of Ship Intelligent Maintenance and Energy Efficiency under Grant 20DZ2252300。
文摘In this work,particulate matter(PM) emissions from a large two-stroke,low-speed marine diesel engine were investigated when the engine was operated with low-sulfur heavy fuel oil(HFO) at various loads.Particle samples were collected in situ from the engine exhaust to determine the detailed physical and chemical properties.The nanostructure and morphology of the nanoparticles were analyzed using transmission electron microscopy images(TEM).The results show that volatile organic carbon(OC) accounts for more than 80% in the HFO particles and leads to an increase in particle size.The thermodynamic conditions of a low-speed engine favor the behavior of capturing the soluble organic components.A large number of spherical char HFO particles with aerodynamic diameters of 0.2 μm-0.5 μm and a suspected inner metal core were detected.The two peak aerodynamic diameters of the HFO nanoparticles are 15 nm and 86 nm.The morphological differences among the HFO nanoparticles in varied engine conditions represent the formation process from primary nascent particles to mature graphitized particles caused by thermodynamics.The above study will be valuable for understanding the characteristics of PM emissions from low-sulfur HFO to achieve the ship PM emissions reduction target.
文摘In efforts to overcome an foreseeable energy crisis predicated on limited oil and gas supplies, reserves; economic variations facing the world, and of course the environmental side effects of fossil fuels, an urgent need for energy sources that provide sustainable, safe and economic supplies for the world is imperative. The current fossil fuel energy system must be improved to ensure a better and cleaner transportation future for the world. Despite the fact that the marine transportation sector consumes only 5% of global petroleum production; it is responsible for 15% of the world NOx and SOx emissions. These figures must be the engine that powers the scientific research worldwide to develop new solutions for a very old energy problem. In this paper, the most effective types of marine power plants were discussed. The history of the development of each type was presented first and the technical aspects were discussed second. Also, the fuel ceils as a new type of power plants used in marine sector were briefed to give a complete overview of the past, present and future of the marine power plants development. Based on the increased worldwide concerns regarding harmful emissions, many researchers have introduced solutions to this problem, including the adoption of new cleaner fuels. This paper was guided using the same trend and by implementing the hydrogen as fuel for marine internal combustion engine, gas turbines, and fuel cells.
文摘Scarcity of conventional petroleum resources has promoted research in alternative fuels for internal combustion engines.Among various possible options,fuels derived from triglycerides(vegetable oils/animal fats)are promising for the substitution of fossil diesel fuel.Vegetable oils poses some characteristics like durability,high viscosity and low volatility compared to mineral diesel fuel.In the present work,experiments were designed to study the effect of reducing kusum and karanja oil’s viscosity by preheating the fuel,using a shell and tube heat exchanger.The acquired engine data were analyzed for various parameters such as brake thermal efficiency,brake specific energy consumption(BSEC),emission of exhaust gases like CO,CO_(2),HC and NO_(x).In operation,the engine performance with kusum and karanja oil(preheated),was found to be very close to that of diesel.The preheated oil's performances were found to be slightly inferior in efficiency due to low heating value.The performance of karanja oil was found better than kusum oil in all respects.
文摘Honne oil(tamanu)(H),a non-edible vegetable oil is native for northwards of Northern Marianas islands and the Ryukyu Islands in southern Japan and westward throughout Polynesia.It has remained as an untapped new possible source of alternative fuel that can be used as diesel engine fuel.Literature pertaining to use of vegetable oil in diesel engine with kerosene and dimethyl carbonate(DMC)is scarce.The present research is aimed to investigate experimentally the performance,exhaust emission and combustion characteristics of a direct injection(DI)diesel engine,typically used in agricultural sector,over the entire load range,when fuelled with neat diesel(ND)and blends of diesel fuel(D)/DMC/H/kerosene(K).DMC/D/H/K blends have a potential to improve the performance and emissions and to be an alternative to ND.Experiments have been conducted when fuelled with H20(20%H+80%D),HK(20%H+40%K+40%D)and HKD5(20%H+40%K+35D+5%DMC)to HKD15 in steps of 5%DMC keeping H and K percentages constant.The emissions(CO,HC and smoke density(SD))of fuel blend HKD15 are found to be lowest,with SD dropping significantly.The NOx level is slightly higher with HKD5 to HKD15 as compared to ND.The brake thermal efficiency of HKD5 to HKD15 is same and it is higher than that of ND.There is a good trade off between NOx and SD.Peak cylinder pressure and premixed combustion phase increases as DMC content increase.