N-hydroxy-pipecolic acid(NHP)activates plant systemic acquired resistance(SAR).Enhanced defense responses are typically accompanied by deficiency in plant development and reproduction.Despite of extensive studies on S...N-hydroxy-pipecolic acid(NHP)activates plant systemic acquired resistance(SAR).Enhanced defense responses are typically accompanied by deficiency in plant development and reproduction.Despite of extensive studies on SAR induction,the effects of NHPmetabolismon plant growth remain largely unclear.In this study,we discovered that NHP glycosylation is a critical factor that fine-tunes the tradeoff between SAR defense and plant growth.We demonstrated that a UDP-glycosyltransferase(UGT76B1)forming NHP glycoside(NHPG)controls the NHP to NHPG ratio.Consistently,the ugt76b1 mutant exhibits enhanced SAR response and an inhibitory effect on plant growth,while UGT76B1 overexpression attenuates SAR response,promotes growth,and delays senescence,indicating that NHP levels are dependent on UGT76B1 function in the course of SAR.Furthermore,our results suggested that,upon pathogen attack,UGT76B1-mediated NHP glycosylation forms a‘‘hand brake’’on NHP accumulation by attenuating the positive regulation of NHP biosynthetic pathway genes,highlighting the complexity of SAR-associated networks.In addition,we showed that UGT76B1-mediated NHP glycosylation in the local site is important for fine-tuning SAR response.Our results implicate that engineering plant immunity through manipulating the NHP/NHPG ratio is a promising method to balance growth and defense response in crops.展开更多
In recent years, proteomics has played a key role in identifying changes in protein levels in plant hosts upon infection by pathogenic organisms and in characterizing cellular and extracellular virulence and pathogeni...In recent years, proteomics has played a key role in identifying changes in protein levels in plant hosts upon infection by pathogenic organisms and in characterizing cellular and extracellular virulence and pathogenicity factors produced by pathogens. Proteomics offers a constantly evolving set of novel techniques to study all aspects of protein structure and function. Proteomics aims to find out the identity and amount of each and every protein present in a cell and actual function mediating specific cellular processes. Structural proteomics elucidates the development and application of experimental approaches to define the primary, secondary and tertiary structures of proteins, while functional proteomics refers to the development and application of global (proteome wide or system-wide) experimental approaches to assess protein function. A detail understanding of plant defense response using successful combination of proteomic techniques and other high throughput techniques of cell biology, biochemistry as well as genomics is needed for practical application to secure and stabilize yield of many crop plants. This review starts with a brief introduction to gel- and non gel-based proteomic techniques followed by the basics of plant-pathogen interaction, the use of proteomics in recent pasts to decipher the mysteries of plant-pathogen interaction, and ends with the future prospects of this technology.展开更多
The 1,2,3-thiadiazole-carboxylate moiety was reported to be an important pharmacophore of plant activators.In this study,a series of novel plant activators based on thieno[2,3-d]-1,2,3-thiadiazole-6-carboxylate were d...The 1,2,3-thiadiazole-carboxylate moiety was reported to be an important pharmacophore of plant activators.In this study,a series of novel plant activators based on thieno[2,3-d]-1,2,3-thiadiazole-6-carboxylate were designed and synthesized and their biological activity as plant activators was studied.The structures of the novel compounds were identifed by1H NMR,19F NMR and HRMS.The in vivo bioassay showed that these novel compounds had good effcacy against seven plant diseases.Especially,compounds 1a and 1c were more potent than the commercialized plant activator BTH.Almost no fungicidal activity was observed for the active compounds in the in vitro assay,which matched the requirements as plant activators.展开更多
Started from salicylic acid(SA) and related commercialized plant activators,based on molecular threedimensional shape and pharmacophore similarity comparison(SHAFTS),a new lead compound benzotriazole was predicted...Started from salicylic acid(SA) and related commercialized plant activators,based on molecular threedimensional shape and pharmacophore similarity comparison(SHAFTS),a new lead compound benzotriazole was predicted and a series of benzotriazole derivatives were designed and synthesized.The bioassay showed that benzotriazole had high activity against a broad spectrum of diseases including fungi and oomycetes in vivo,but no activity in vitro.And the introduction of proper groups at the1'-position and 5'-position was beneficial to the activity.So,they had the potential to be exploited as novel plant activators.展开更多
The small phenolic compound salicylic acid (SA) plays an important regulatory role in multiple physiological processes including plant im- mune response. Significant progress has been made during the past two decade...The small phenolic compound salicylic acid (SA) plays an important regulatory role in multiple physiological processes including plant im- mune response. Significant progress has been made during the past two decades in understanding the SA-mediated defense signaling network. Characterization of a number of genes functioning in SA biosynthesis, conjugation, accumulation, signaling, and crosstalk with other hormones such as jasmonic acid, ethylene, abscisic acid, auxin, gibberellic acid, cytokinin, brassinosteroid, and peptide hormones has sketched the finely tuned immune response network. Full understanding of the mech- anism of plant immunity will need to take advantage of fast developing genomics tools and bioinformatics techniques. However, elucidating genetic components involved in these pathways by conventional ge- netics, biochemistry, and molecular biology approaches will continue to be a major task of the community. High-throughput method for SA quantification holds the potential for isolating additional mutants related to SA-mediated defense signaling.展开更多
基金We are grateful to the Adelis Foundation,the Leona M.and Harry B.Helmsley Charitable Trust,the Jeanne and Joseph Nissim Foundation for Life Sciences,and especially the Tom and Sondra Rykoff Family Foundation Research for supporting the A.A.laboratory activityJ.C.was supported by the PBC(Public and Budgeting Committee)of the State of Israel Council for Higher Education fellowship program.A.A.is the incumbent of the Peter J.Cohn Professorial Chair
文摘N-hydroxy-pipecolic acid(NHP)activates plant systemic acquired resistance(SAR).Enhanced defense responses are typically accompanied by deficiency in plant development and reproduction.Despite of extensive studies on SAR induction,the effects of NHPmetabolismon plant growth remain largely unclear.In this study,we discovered that NHP glycosylation is a critical factor that fine-tunes the tradeoff between SAR defense and plant growth.We demonstrated that a UDP-glycosyltransferase(UGT76B1)forming NHP glycoside(NHPG)controls the NHP to NHPG ratio.Consistently,the ugt76b1 mutant exhibits enhanced SAR response and an inhibitory effect on plant growth,while UGT76B1 overexpression attenuates SAR response,promotes growth,and delays senescence,indicating that NHP levels are dependent on UGT76B1 function in the course of SAR.Furthermore,our results suggested that,upon pathogen attack,UGT76B1-mediated NHP glycosylation forms a‘‘hand brake’’on NHP accumulation by attenuating the positive regulation of NHP biosynthetic pathway genes,highlighting the complexity of SAR-associated networks.In addition,we showed that UGT76B1-mediated NHP glycosylation in the local site is important for fine-tuning SAR response.Our results implicate that engineering plant immunity through manipulating the NHP/NHPG ratio is a promising method to balance growth and defense response in crops.
文摘In recent years, proteomics has played a key role in identifying changes in protein levels in plant hosts upon infection by pathogenic organisms and in characterizing cellular and extracellular virulence and pathogenicity factors produced by pathogens. Proteomics offers a constantly evolving set of novel techniques to study all aspects of protein structure and function. Proteomics aims to find out the identity and amount of each and every protein present in a cell and actual function mediating specific cellular processes. Structural proteomics elucidates the development and application of experimental approaches to define the primary, secondary and tertiary structures of proteins, while functional proteomics refers to the development and application of global (proteome wide or system-wide) experimental approaches to assess protein function. A detail understanding of plant defense response using successful combination of proteomic techniques and other high throughput techniques of cell biology, biochemistry as well as genomics is needed for practical application to secure and stabilize yield of many crop plants. This review starts with a brief introduction to gel- and non gel-based proteomic techniques followed by the basics of plant-pathogen interaction, the use of proteomics in recent pasts to decipher the mysteries of plant-pathogen interaction, and ends with the future prospects of this technology.
基金financially supported by the National Basic Research Program of China (973 Program, No. 2010CB126100)the National High Technology Research and Development Program of China (863 Program, No. 2011AA10A207)+1 种基金the China 111 Project (No. B07023)the Fundamental Research Funds for the Central Universities.
文摘The 1,2,3-thiadiazole-carboxylate moiety was reported to be an important pharmacophore of plant activators.In this study,a series of novel plant activators based on thieno[2,3-d]-1,2,3-thiadiazole-6-carboxylate were designed and synthesized and their biological activity as plant activators was studied.The structures of the novel compounds were identifed by1H NMR,19F NMR and HRMS.The in vivo bioassay showed that these novel compounds had good effcacy against seven plant diseases.Especially,compounds 1a and 1c were more potent than the commercialized plant activator BTH.Almost no fungicidal activity was observed for the active compounds in the in vitro assay,which matched the requirements as plant activators.
基金financially supported by the National Basic Research Program of China(973 Program,No.2010CB126100)the National High Technology Research and Development Program of China(863 Program,No.2011AA10A207)+1 种基金the Shanghai Leading Academic Discipline Project(B507)the Fundamental Research Funds for the Central Universities
文摘Started from salicylic acid(SA) and related commercialized plant activators,based on molecular threedimensional shape and pharmacophore similarity comparison(SHAFTS),a new lead compound benzotriazole was predicted and a series of benzotriazole derivatives were designed and synthesized.The bioassay showed that benzotriazole had high activity against a broad spectrum of diseases including fungi and oomycetes in vivo,but no activity in vitro.And the introduction of proper groups at the1'-position and 5'-position was beneficial to the activity.So,they had the potential to be exploited as novel plant activators.
基金supported by a grant from the National Science Foundation (IOS-0842716) to Dr.Z Mou
文摘The small phenolic compound salicylic acid (SA) plays an important regulatory role in multiple physiological processes including plant im- mune response. Significant progress has been made during the past two decades in understanding the SA-mediated defense signaling network. Characterization of a number of genes functioning in SA biosynthesis, conjugation, accumulation, signaling, and crosstalk with other hormones such as jasmonic acid, ethylene, abscisic acid, auxin, gibberellic acid, cytokinin, brassinosteroid, and peptide hormones has sketched the finely tuned immune response network. Full understanding of the mech- anism of plant immunity will need to take advantage of fast developing genomics tools and bioinformatics techniques. However, elucidating genetic components involved in these pathways by conventional ge- netics, biochemistry, and molecular biology approaches will continue to be a major task of the community. High-throughput method for SA quantification holds the potential for isolating additional mutants related to SA-mediated defense signaling.
基金Supported by National Natural Science Foundation of China(No.32072444)National Natural Science Foundation of China(No.32060429)the key Project of Natural Science Foundation of Xinjiang Uygur Autonomous Region(No.2022D01D44).