Vertical forest structure is closely linked to multiple ecosystem characteristics,such as biodiversity,habitat,and productivity.Mixing tree species in planted forests has the potential to create diverse vertical fores...Vertical forest structure is closely linked to multiple ecosystem characteristics,such as biodiversity,habitat,and productivity.Mixing tree species in planted forests has the potential to create diverse vertical forest structures due to the different physiological and morphological traits of the composing tree species.However,the relative importance of species richness,species identity and species interactions for the variation in vertical forest structure remains unclear,mainly because traditional forest inventories do not observe vertical stand structure in detail.Terrestrial laser scanning(TLS),however,allows to study vertical forest structure in an unprecedented way.Therefore,we used TLS single scan data from 126 plots across three experimental planted forests of a largescale tree diversity experiment in Belgium to study the drivers of vertical forest structure.These plots were 9–11years old young pure and mixed forests,characterized by four levels of tree species richness ranging from monocultures to four-species mixtures,across twenty composition levels.We generated vertical plant profiles from the TLS data and derived six stand structural variables.Linear mixed models were used to test the effect of species richness on structural variables.Employing a hierarchical diversity interaction modelling framework,we further assessed species identity effect and various species interaction effects on the six stand structural variables.Our results showed that species richness did not significantly influence most of the stand structure variables,except for canopy height and foliage height diversity.Species identity on the other hand exhibited a significant impact on vertical forest structure across all sites.Species interaction effects were observed to be site-dependent due to varying site conditions and species pools,and rapidly growing tree species tend to dominate these interactions.Overall,our results highlighted the importance of considering both species identity and interaction effects in choosing suitable species combinations for forest management practices aimed at enhancing vertical forest structure.展开更多
Ethiopia is one of the countries in the world endowed with rich biological resources. However, due to human impacts, the forest cover in Ethiopia has been decreasing rapidly. The study was carried out with the purpose...Ethiopia is one of the countries in the world endowed with rich biological resources. However, due to human impacts, the forest cover in Ethiopia has been decreasing rapidly. The study was carried out with the purpose of finding out the Regeneration Status, Population Structure and Floristic composition of Woody Plant Species in Sheleko Medihanialem Natural Forest in Gondar, North West Ethiopia, from October 2019 to September 2020. The systematic vegetation sampling method was used to collect data from Fifty plots of 20 m × 20 m (400 m2) along five line transects. In addition, five, 5 m × 5 m subplots were laid within the main plot to sample seedlings and saplings. The floristic composition and population structure of woody individuals of trees and shrubs with a diameter at breast height (DBH) ≥ 2.5 cm and height ≥ 2 m were measured. DBH ≤ 2.5 cm and less than 1 m height were considered as seedlings and DBH ≥ 2.5 cm and height of 1 - 2 m as saplings. Vegetation data of density, frequency, basal area, and importance value index were computed. A total of 65 woody plant species in 54 genera and 34 plant families were recorded. Fabaceae, Moraceae and Euphorbiaceae were the dominant families in terms of species richness. Woody species densities for mature individuals were 2202.5 stems∙ha−1, seedling 2419.2 stems∙ha−1 and sapling 1737.6 stems∙ha−1. The forest was dominated by small-sized/young trees and shrubs, indicating the status of secondary growth and/or regeneration.展开更多
A two-line hybrid rice combination, Liangyoupeijiu, was used to estimate several factors of plant type, and environmental models for these factors at the heading stage were established using the data of eight ecologic...A two-line hybrid rice combination, Liangyoupeijiu, was used to estimate several factors of plant type, and environmental models for these factors at the heading stage were established using the data of eight ecological experimental sites in 2006 and 2007. According to climatic data from 1951 to 2005, the differences in those factors and their effects on plant canopy were analyzed for four rice cropping areas in China, including South China, the middle-lower reaches of the Yangtze River, Sichuan Basin, and river valley in Yunnan, China. The thickness of leaf layer (the distance from pulvinus of the third leaf from the top to the tip of flag leaf) and distribution of leaf area could be used as candidate indices for the plant type of a rice canopy.展开更多
Concrete structures in main coal cleaning plants have been rebuilt and reinforced in the coal mines of the Shanghai Datun Energy Sources Co. Ltd., the first colliery of the Pingdingshan Coal Co. Ltd. and the Sanhejian...Concrete structures in main coal cleaning plants have been rebuilt and reinforced in the coal mines of the Shanghai Datun Energy Sources Co. Ltd., the first colliery of the Pingdingshan Coal Co. Ltd. and the Sanhejian mine of the Xuzhou Mining Group Co. Ltd. In these projects, the operating environment and reliability of concrete structures in the main plants of the three companies were investigated and the safety of the structures inspected. Qualitative and quantitative analyses were made on the special natural, technological and mechanical environments around the structures. On the basis of these analyses, we discuss the long-term, combined actions of the harsh natural (corrosive gases, liquids and solids) and mechanical environments on concrete structures and further investigated the damage and deteriorating mechanisms and curing techniques of concrete structures in the main coal cleaning plants. Our study can provide a theoretical basis for ensuring the reliability of concrete structures in main coal cleaning plants.展开更多
Nitraria tangutorum Bobr.,a typical xero-halophyte,can be used for vegetation restoration and reconstruction in arid and semiarid regions affected by salinity.However,global climate change and unreasonable human activ...Nitraria tangutorum Bobr.,a typical xero-halophyte,can be used for vegetation restoration and reconstruction in arid and semiarid regions affected by salinity.However,global climate change and unreasonable human activity have exacerbated salinization in arid and semi-arid regions,which in turn has led to the growth inhibition of halophytes,including N.tangutorum.Arbuscular mycorrhizal fungi(AMF)and plant growth-promoting rhizobacteria(PGPR)have the potential to improve the salt tolerance of plants and their adaptation to saline soil environments.In this study,the effects of single and combined inoculations of AMF(Glomus mosseae)and PGPR(Bacillus amyloliquefaciens FZB42)on N.tangutorum were evaluated in severe saline soil conditions.The results indicate that AMF and PGPR alone may not adapt well to the real soil environment,and cannot ensure the effect of either growth promotion or salt-tolerance induction on N.tangutorum seedlings.However,the combination of AMF and PGPR significantly promoted mycorrhizal colonization,increased biomass accumulation,improved morphological development,enhanced photosynthetic performance,stomatal adjustment ability,and the exchange of water and gas.Co-inoculation also significantly counteracted the adverse effect of salinity on the soil structure of N.tangutorum seedlings.It is concluded that the effectiveness of microbial inoculation on the salt tolerance of N.tangutorum seedlings depends on the functional compatibility between plants and microorganisms as well as the specific combinations of AMF and PGPR.展开更多
Driven by the concept of agricultural sustainable development,crop planting structure optimization(CPSO)has become an effective measure to reduce regional crop water demand,ensure food security,and protect the environ...Driven by the concept of agricultural sustainable development,crop planting structure optimization(CPSO)has become an effective measure to reduce regional crop water demand,ensure food security,and protect the environment.However,traditional optimization of crop planting structures often ignores the impact on regional food supply–demand relations and interprovincial food trading.Therefore,using a system analysis concept and taking virtual water output as the connecting point,this study proposes a theoretical CPSO framework based on a multi-aspect and full-scale evaluation index system.To this end,a water footprint(WF)simulation module denoted as soil and water assessment tool–water footprint(SWAT-WF)is constructed to simulate the amount and components of regional crop WFs.A multi-objective spatial CPSO model with the objectives of maximizing the regional economic water productivity(EWP),minimizing the blue water dependency(BWFrate),and minimizing the grey water footprint(GWFgrey)is established to achieve an optimal planting layout.Considering various benefits,a fullscale evaluation index system based on region,province,and country scales is constructed.Through an entropy weight technique for order preference by similarity to an ideal solution(TOPSIS)comprehensive evaluation model,the optimal plan is selected from a variety of CPSO plans.The proposed framework is then verified through a case study of the upper–middle reaches of the Heihe River Basin in Gansu province,China.By combining the theory of virtual water trading with system analysis,the optimal planting structure is found.While sacrificing reasonable regional economic benefits,the optimization of the planting structure significantly improves the regional water resource benefits and ecological benefits at different scales.展开更多
XPCC has long shouldered the mission of exploitation of virgin land in border area,but the special geographic distribution leads to regional segmentation and administrative division in the planting structure of grain,...XPCC has long shouldered the mission of exploitation of virgin land in border area,but the special geographic distribution leads to regional segmentation and administrative division in the planting structure of grain,cotton,oil and sugar for XPCC. Since 1980,XPCC's total planting area of grain,cotton,oil and sugar has increased steadily year by year. The yield levels show a unimodal trend; the total yield of cotton has been showing a geometric growth trend; the total yield of oil crops and sugar beet shows a fluctuating growth trend,but the total yield of grain crops shows a bimodal growth trend. XPCC's grain crops are mainly in the farms of Division 4 in Ili Valley and Division 6 in Changji;cotton production in South and North Xinjiang is basically the same,and the yield in South Xinjiang is slightly higher than in North Xinjiang,but cotton can not be planted in most farms of Division 9 and Division 10; oil crops are grown mainly in cold regions; sugar beet is mainly in the farms of Division 2,Division 4,Division 7 and Division 9. Some factors are limiting XPCC's farming development such as unreasonable agricultural structure,quite different regional production levels and great grain crop yield fluctuations. Therefore,it is recommended to optimize regional distribution,increase efforts to promote new technologies,and strengthen brand building to help XPCC to give play to the agricultural resource advantages.展开更多
Based on the oral interview of six different types of rural families in Houdian Village,Longkou City,Shandong Province,combined with the adjustment of rural reform policies,this paper analyzed reasons for the reform o...Based on the oral interview of six different types of rural families in Houdian Village,Longkou City,Shandong Province,combined with the adjustment of rural reform policies,this paper analyzed reasons for the reform of rural planting structure in China since the reform and opening-up and elaborated the general outline of the reform of the planting structure.From the changes in farmers' attitudes,it explored the achievements and shortcomings of rural reform in the past 40 years.It discussed problems such as shortage of labor resources and vacancy of family education of teenagers in the current sustainable development of rural areas.Finally,it came up with some recommendations for the development of rural areas.展开更多
Based on the survey data of 150 peasant households in typical Karst mountainous area in the year 2009, causations, characteristics and influence factors of the concurrent-business behavior of peasant households during...Based on the survey data of 150 peasant households in typical Karst mountainous area in the year 2009, causations, characteristics and influence factors of the concurrent-business behavior of peasant households during planting structure adjustment are analyzed. Result shows that there is significant positive correlation between the concurrent-business income and the household income of farmers. And the concurrent-business behavior has the tendency to be popular among the young farmers with the characteristics of relative concentration, strong will of farmers and the significant impact of education degree on the concurrent-business income. Information, capital, skill, and market awareness are the main factors affecting the concurrent-business behavior of peasant households. Countermeasures to optimize the concurrent-business behavior of peasant households are put forward, such as strengthening the skills training for farmers to improve the cultural quality of peasant households, establishing modern rural financial service system to offer capital support for the development of peasant households, setting up information base of rural labor force to provide more information and channels for the concurrent-business behavior of peasant households, and enhancing the cultivation of farmers' market awareness to improve their ability to adapt to market economy.展开更多
This paper focuses on how aging can affect performance of safety-related structures in nuclear power plant (NPP). Knowledge and assessment of impacts of aging on structures are essential to plant life extension analys...This paper focuses on how aging can affect performance of safety-related structures in nuclear power plant (NPP). Knowledge and assessment of impacts of aging on structures are essential to plant life extension analysis,especially performance to severe loadings such as loss-of-coolant-accidents or major seismic events. Plant life extension issues are of keen interest in countries (like the United States) which have a large,aging fleet of NPPs. This paper addresses the overlap and relationship of structure aging to severe loading performance,with particular emphasis on containment structures.展开更多
[Objectives]To analyze and optimize the crop planting structure in Ningxia based on the shortage of water resources and the large proportion of agricultural water consumption in Ningxia.[Methods]The change trend of cr...[Objectives]To analyze and optimize the crop planting structure in Ningxia based on the shortage of water resources and the large proportion of agricultural water consumption in Ningxia.[Methods]The change trend of crop planting area and planting structure in Ningxia in 2004-2018 was analyzed,and a multi-objective optimization model was constructed with the objectives of maximum crop profit and minimum water demand.The STEM method was applied to solve the problem,and the optimization scheme of crop planting in Ningxia was obtained.[Results]In Ningxia in 2004-2018,the planting area showed the characteristics of"increase-decrease-increase";the area and proportion of cash crops were increasing,and the proportion of grain crops was gradually decreasing,but the proportion of crops with high water consumption was still high.After the planting structure was optimized,the economic benefit was increased by 34.85×10^(8) yuan,and the water demand was reduced by 3.9×10^(8) m^(3).[Conclusions]Under the premise of ensuring food security,the optimized scheme not only saves water resources but also obtains higher economic benefits.It provides a reference for alleviating water shortage and increasing farmers'income.展开更多
Plants usually suffer drought stress during their growth process. As the photosynthetic activity center of plants, the leaf is the most sensitive organ under drought stress. In order to support the research on drought...Plants usually suffer drought stress during their growth process. As the photosynthetic activity center of plants, the leaf is the most sensitive organ under drought stress. In order to support the research on drought resistance of higher plants, this study reviewed the adaptation response and damage performance of epidermal structure, palisade tissue and spongy tissue, thickness, veins and stomata of plant leaves under drought stress.展开更多
The flora of the Qinghai-Xizang Plateau belongs to the floristic subkingdom of the Holarctic plant kingdom. The Xizang part of this subkingdom can be divided into 4 plant regions. 1) the Yarlung Zangbo River valley re...The flora of the Qinghai-Xizang Plateau belongs to the floristic subkingdom of the Holarctic plant kingdom. The Xizang part of this subkingdom can be divided into 4 plant regions. 1) the Yarlung Zangbo River valley region. There are 1,003 species of seed plants, making up 19.38% of the total species in Xizang, and 159 endemic species, 15.89% of the total seed plants. The flora originates mainly from the East Himalayas and the Hengduan Mountains. 2) The Tanggute region. There are 349 species of seed plants and 10 endemic species. The flora represents an intermediate one between the Qinghai-Xizang Plateau and the Hengduan Mountains.3) The Qiangtang region. There are 255 species of seed plants and 18 endemic species. The flora derived from the Himalayan flora and mixed with a great number of Tethysian elements. 4) the Ali region. There are 547 species of seed plants and 41 endemic species. The flora seems to be closely related to Tethysian one.展开更多
: Consideration of the dynamic effects of the site and structural parameter uncertainty is required by the standards for nuclear power plants (NPPs) in most countries. The anti-seismic standards provide two basic m...: Consideration of the dynamic effects of the site and structural parameter uncertainty is required by the standards for nuclear power plants (NPPs) in most countries. The anti-seismic standards provide two basic methods to analyze parameter uncertainty. Directly manually dealing with the calculated floor response spectra (FRS) values of deterministic approaches is the first method. The second method is to perform probability statistical analysis of the FRS results on the basis of the Monte Carlo method. The two methods can only reflect the overall effects of the uncertain parameters, and the results cannot be screened for a certain parameter's influence and contribution. In this study, based on the dynamic analyses of the floor response spectra of NPPs, a comprehensive index of the assessed impact for various uncertain parameters is presented and recommended, including the correlation coefficient, the regression slope coefficient and Tornado swing. To compensate for the lack of guidance in the NPP seismic standards, the proposed method can effectively be used to evaluate the contributions of various parameters from the aspects &sensitivity, acuity and statistical swing correlations. Finally, examples are provided to verify the set of indicators from systematic and intuitive perspectives, such as the uncertainty of the impact of the structure parameters and the contribution to the FRS of NPPs. The index is sensitive to different types of parameters, which provides a new technique for evaluating the anti-seismic parameters required for NPPs.展开更多
Large-scale patterns of biodiversity and the underlying mechanisms that regulate these patterns are central topics in biogeography and macroecology.The Qinghai-Tibet Plateau serves as a natural laboratory for studying...Large-scale patterns of biodiversity and the underlying mechanisms that regulate these patterns are central topics in biogeography and macroecology.The Qinghai-Tibet Plateau serves as a natural laboratory for studying these issues.However,most previous studies have focused on the entire Qinghai-Tibet Plateau,leaving independent physical geographic subunits in the region less well understood.We studied the current plant diversity of the Kunlun Mountains,an independent physical geographic subunit located in northwestern China on the northern edge of the Qinghai-Tibet Plateau.We integrated measures of species distribution,geological history,and phylogeography,and analyzed the taxonomic richness,phylogenetic diversity,and community phylogenetic structure of the current plant diversity in the area.The distribution patterns of 1911 seed plants showed that species were distributed mainly in the eastern regions of the Kunlun Mountains.The taxonomic richness,phylogenetic diversity,and genera richness showed that the eastern regions of the Kunlun Mountains should be the priority area of biodiversity conservation,particularly the southeastern regions.The proportion of Chinese endemic species inhabiting the Kunlun Mountains and their floristic similarity may indicate that the current patterns of species diversity were favored via species colonization.The Hengduan Mountains,a biodiversity hotspot,is likely the largest source of species colonization of the Kunlun Mountains after the Quaternary.The net relatedness index indicated that 20 of the 28 communities examined were phylo-genetically dispersed,while the remaining communities were phylogenetically clustered.The nearest taxon index indicated that 27 of the 28 communities were phylogenetically clustered.These results suggest that species colonization and habitat filtering may have contributed to the current plant diversity of the Kunlun Mountains via ecological and evolutionary processes,and habitat filtering may play an important role in this ecological process.展开更多
Root length and root length density of Lespedeza bicolor,Amorpha fruticosa,and Sea buckthorn were investigated in a country highway-TongSan highway(Tongjiang to Sanya) in Heilongjiang Province,China.The root lengths...Root length and root length density of Lespedeza bicolor,Amorpha fruticosa,and Sea buckthorn were investigated in a country highway-TongSan highway(Tongjiang to Sanya) in Heilongjiang Province,China.The root lengths were divided into five root orders according to Pregizter sequence classification method.Results show that sea buckthorn roots are dominated by coarse roots in the horizontal growth,while L.bicolor has a large proportion of fine roots in vertical conical growth and A.fruticosa is in depth growth.Root length density of L.bicolor in all the root sequences is higher than that of sea buckthorn and A.fruticosa.On the basis of the root structure,it is inferred that L.bicolor roots mainly absorb the surface soil moisture for its normal growth;in contrast,A.fruticosa has good uptake ability to deep soil water.The root structure of sea buckthorn implies that it has a strong drought resistance.展开更多
The leaf and stem types are core structural characteristics of the rice phenotype that determine the light interception ability of the canopy and directly affect crop yield.The PLANT ARCHITECTURE AND YIELD 1(PAY1)gene...The leaf and stem types are core structural characteristics of the rice phenotype that determine the light interception ability of the canopy and directly affect crop yield.The PLANT ARCHITECTURE AND YIELD 1(PAY1)gene has been shown to alter the prostrate growth habit of wild rice and to inhibit the wild rice prostrate growth gene PROSTRATE GROWTH 1(PROG1).In this paper,the wild rice introgression line YIL55,which contains the PROG1 gene;its mutant,PAY1;and its parent,TQ,were used as test varieties to construct three-dimensional(3D)canopy structure models based on 3D digital assay technology.On this basis,quantitative analyses of the PAY1 gene and the plant leaf and stem types at the jointing,heading and filling stages were performed.Under the influence of the PAY1 gene,the plant stem and leaf angles from vertical decreased significantly;the plants were upright,with larger leaves;the culm angle changed from loose to compact;and the average tiller angle during the three key reproductive stages decreased from 44.9,28.5 and 21.3°to 17.6,8.4 and 10.5°,respectively.Moreover,the PAY1 mutant retained the PROG1 gene characteristic of exhibiting dynamic changes in the tiller angle throughout the growth period,and its culm angle changed from loose during the jointing stage to compact during the heading stage.The measurements of photosynthetically active radiation(PAR)in the canopy also showed that the mutant PAY1 allowed more PAR to reach the bottom of the canopy than the other varieties.The light-extinction coefficients for PAY1 at the jointing,heading and filling stages were 0.535,0.312 and 0.586,respectively,which were lower than those of the other two varieties.In this study,the influence of the PAY1 gene on rice canopy structural characteristics was quantitatively analyzed to provide effective canopy structure parameters for breeding the ideal plant type.展开更多
For the solid blanket concept of helium cooled ceramic breeder (HCCB) demonstration fusion power plant (DEMO), a feasible blanket structure with configuration 2×X is proposed as considering relatively low tempera...For the solid blanket concept of helium cooled ceramic breeder (HCCB) demonstration fusion power plant (DEMO), a feasible blanket structure with configuration 2×X is proposed as considering relatively low temperature limit of neutron multiplier beryllium pebbles. Based on that, preliminary design for the typical blanket module of HCCB DEMO has been carried out and verified by thermal-hydraulic analysis and structural analysis. Furthermore, the specific relationship of maximum temperature depended on the surface heating of blanket key part first wall (FW) is also analyzed.展开更多
Phyllosphere microorganisms are a crucial component of environmental microorganisms,highly influenced by host characteristics,and play a significant role in plant health and productivity.Nonetheless,the impact of host...Phyllosphere microorganisms are a crucial component of environmental microorganisms,highly influenced by host characteristics,and play a significant role in plant health and productivity.Nonetheless,the impact of host characteristics on shaping phyllosphere microbial communities of plants with different life forms remains ambiguous.Utilizing high-throughput sequencing technology,this study analyzed the diversity and community composition of phyllosphere epiphytic microorganisms(e.g.,bacteria and fungi)of various plant life forms in the hinterland of the Gurbantunggut Desert,Northwest China.Functional annotation of prokaryotic taxa(FAPROTAX)and fungi function guild(FUNGuild)were employed to assess the ecological functions of microorganisms and to investigate the role of stochastic and deterministic processes in shaping phyllosphere microbial communities.Result showed a diverse array of phyllosphere epiphytic microorganisms in the desert plants,with Proteobacteria,Cyanobacteria,and Actinobacteriota dominating bacterial community,while Ascomycota and Basidiomycota were prevalent in fungal community.Comparison across different plant life forms highlighted distinct microbial communities,indicating strong filtering effects by plant characteristics.FAPROTAX prediction identified intracellular parasites(accounting for 27.44%of bacterial community abundance),chemoheterotrophy(10.12%),and phototrophy(17.41%)as the main functions of epiphytic bacteria on leaves of different life form plants.FUNGuild prediction indicated that phyllosphere epiphytic fungi primarily served as Saprotrophs(81.77%),Pathotrophs(17.41%),and Symbiotrophs(0.82%).Co-occurrence network analysis demonstrated a predominance of positive correlations among different microbial taxa.Raup-Crick dissimilarity index analysis revealed that deterministic processes predominantly influenced phyllosphere bacterial and fungal community assembly.Variance partitioning analysis and random forest modeling suggested that plant leaf functional traits significantly impacted both bacterial and fungal community composition,with fungal community composition showing a closer association with leaf nutrients and physiology compared with bacterial community composition.The distinct responses of bacterial and fungal communities to plant traits were attributed to the differing properties of bacteria and fungi,such as bacteria having higher potential dispersal rates and broader ecological niches than fungi.Overall,the results indicate that phyllosphere bacterial and fungal communities undergo similar community assembly processes,with fungi being more influenced by plant characteristics than bacteria.These findings offer novel insights into the ecology of phyllosphere microbial communities of desert plants.展开更多
基金Mengxi Wang holds a doctoral scholarship from the China scholarship council(CSC:202003270025)。
文摘Vertical forest structure is closely linked to multiple ecosystem characteristics,such as biodiversity,habitat,and productivity.Mixing tree species in planted forests has the potential to create diverse vertical forest structures due to the different physiological and morphological traits of the composing tree species.However,the relative importance of species richness,species identity and species interactions for the variation in vertical forest structure remains unclear,mainly because traditional forest inventories do not observe vertical stand structure in detail.Terrestrial laser scanning(TLS),however,allows to study vertical forest structure in an unprecedented way.Therefore,we used TLS single scan data from 126 plots across three experimental planted forests of a largescale tree diversity experiment in Belgium to study the drivers of vertical forest structure.These plots were 9–11years old young pure and mixed forests,characterized by four levels of tree species richness ranging from monocultures to four-species mixtures,across twenty composition levels.We generated vertical plant profiles from the TLS data and derived six stand structural variables.Linear mixed models were used to test the effect of species richness on structural variables.Employing a hierarchical diversity interaction modelling framework,we further assessed species identity effect and various species interaction effects on the six stand structural variables.Our results showed that species richness did not significantly influence most of the stand structure variables,except for canopy height and foliage height diversity.Species identity on the other hand exhibited a significant impact on vertical forest structure across all sites.Species interaction effects were observed to be site-dependent due to varying site conditions and species pools,and rapidly growing tree species tend to dominate these interactions.Overall,our results highlighted the importance of considering both species identity and interaction effects in choosing suitable species combinations for forest management practices aimed at enhancing vertical forest structure.
文摘Ethiopia is one of the countries in the world endowed with rich biological resources. However, due to human impacts, the forest cover in Ethiopia has been decreasing rapidly. The study was carried out with the purpose of finding out the Regeneration Status, Population Structure and Floristic composition of Woody Plant Species in Sheleko Medihanialem Natural Forest in Gondar, North West Ethiopia, from October 2019 to September 2020. The systematic vegetation sampling method was used to collect data from Fifty plots of 20 m × 20 m (400 m2) along five line transects. In addition, five, 5 m × 5 m subplots were laid within the main plot to sample seedlings and saplings. The floristic composition and population structure of woody individuals of trees and shrubs with a diameter at breast height (DBH) ≥ 2.5 cm and height ≥ 2 m were measured. DBH ≤ 2.5 cm and less than 1 m height were considered as seedlings and DBH ≥ 2.5 cm and height of 1 - 2 m as saplings. Vegetation data of density, frequency, basal area, and importance value index were computed. A total of 65 woody plant species in 54 genera and 34 plant families were recorded. Fabaceae, Moraceae and Euphorbiaceae were the dominant families in terms of species richness. Woody species densities for mature individuals were 2202.5 stems∙ha−1, seedling 2419.2 stems∙ha−1 and sapling 1737.6 stems∙ha−1. The forest was dominated by small-sized/young trees and shrubs, indicating the status of secondary growth and/or regeneration.
基金supported by the National Natural Science Foundation of China (Grant No. 30370830)
文摘A two-line hybrid rice combination, Liangyoupeijiu, was used to estimate several factors of plant type, and environmental models for these factors at the heading stage were established using the data of eight ecological experimental sites in 2006 and 2007. According to climatic data from 1951 to 2005, the differences in those factors and their effects on plant canopy were analyzed for four rice cropping areas in China, including South China, the middle-lower reaches of the Yangtze River, Sichuan Basin, and river valley in Yunnan, China. The thickness of leaf layer (the distance from pulvinus of the third leaf from the top to the tip of flag leaf) and distribution of leaf area could be used as candidate indices for the plant type of a rice canopy.
基金Project BK2008128 supported by the Natural Science Foundation of Jiangsu Province
文摘Concrete structures in main coal cleaning plants have been rebuilt and reinforced in the coal mines of the Shanghai Datun Energy Sources Co. Ltd., the first colliery of the Pingdingshan Coal Co. Ltd. and the Sanhejian mine of the Xuzhou Mining Group Co. Ltd. In these projects, the operating environment and reliability of concrete structures in the main plants of the three companies were investigated and the safety of the structures inspected. Qualitative and quantitative analyses were made on the special natural, technological and mechanical environments around the structures. On the basis of these analyses, we discuss the long-term, combined actions of the harsh natural (corrosive gases, liquids and solids) and mechanical environments on concrete structures and further investigated the damage and deteriorating mechanisms and curing techniques of concrete structures in the main coal cleaning plants. Our study can provide a theoretical basis for ensuring the reliability of concrete structures in main coal cleaning plants.
基金the National Key Research and Development Program of China(No.2017YFE0119100)the National Natural Science Foundation of China(No.42107513)the Key Research and Development Program of Gansu(No.21YF5FA151)。
文摘Nitraria tangutorum Bobr.,a typical xero-halophyte,can be used for vegetation restoration and reconstruction in arid and semiarid regions affected by salinity.However,global climate change and unreasonable human activity have exacerbated salinization in arid and semi-arid regions,which in turn has led to the growth inhibition of halophytes,including N.tangutorum.Arbuscular mycorrhizal fungi(AMF)and plant growth-promoting rhizobacteria(PGPR)have the potential to improve the salt tolerance of plants and their adaptation to saline soil environments.In this study,the effects of single and combined inoculations of AMF(Glomus mosseae)and PGPR(Bacillus amyloliquefaciens FZB42)on N.tangutorum were evaluated in severe saline soil conditions.The results indicate that AMF and PGPR alone may not adapt well to the real soil environment,and cannot ensure the effect of either growth promotion or salt-tolerance induction on N.tangutorum seedlings.However,the combination of AMF and PGPR significantly promoted mycorrhizal colonization,increased biomass accumulation,improved morphological development,enhanced photosynthetic performance,stomatal adjustment ability,and the exchange of water and gas.Co-inoculation also significantly counteracted the adverse effect of salinity on the soil structure of N.tangutorum seedlings.It is concluded that the effectiveness of microbial inoculation on the salt tolerance of N.tangutorum seedlings depends on the functional compatibility between plants and microorganisms as well as the specific combinations of AMF and PGPR.
基金financially supported by the National Key Research and Development Program of China(2022YFD1900501)National Natural Science Foundation of China(51861125103)。
文摘Driven by the concept of agricultural sustainable development,crop planting structure optimization(CPSO)has become an effective measure to reduce regional crop water demand,ensure food security,and protect the environment.However,traditional optimization of crop planting structures often ignores the impact on regional food supply–demand relations and interprovincial food trading.Therefore,using a system analysis concept and taking virtual water output as the connecting point,this study proposes a theoretical CPSO framework based on a multi-aspect and full-scale evaluation index system.To this end,a water footprint(WF)simulation module denoted as soil and water assessment tool–water footprint(SWAT-WF)is constructed to simulate the amount and components of regional crop WFs.A multi-objective spatial CPSO model with the objectives of maximizing the regional economic water productivity(EWP),minimizing the blue water dependency(BWFrate),and minimizing the grey water footprint(GWFgrey)is established to achieve an optimal planting layout.Considering various benefits,a fullscale evaluation index system based on region,province,and country scales is constructed.Through an entropy weight technique for order preference by similarity to an ideal solution(TOPSIS)comprehensive evaluation model,the optimal plan is selected from a variety of CPSO plans.The proposed framework is then verified through a case study of the upper–middle reaches of the Heihe River Basin in Gansu province,China.By combining the theory of virtual water trading with system analysis,the optimal planting structure is found.While sacrificing reasonable regional economic benefits,the optimization of the planting structure significantly improves the regional water resource benefits and ecological benefits at different scales.
基金Supported by National Soft Science Research Program(2014GXS4D160)Soft Science Research Program of Xinjiang Production and Construction Corps(2014BB033)
文摘XPCC has long shouldered the mission of exploitation of virgin land in border area,but the special geographic distribution leads to regional segmentation and administrative division in the planting structure of grain,cotton,oil and sugar for XPCC. Since 1980,XPCC's total planting area of grain,cotton,oil and sugar has increased steadily year by year. The yield levels show a unimodal trend; the total yield of cotton has been showing a geometric growth trend; the total yield of oil crops and sugar beet shows a fluctuating growth trend,but the total yield of grain crops shows a bimodal growth trend. XPCC's grain crops are mainly in the farms of Division 4 in Ili Valley and Division 6 in Changji;cotton production in South and North Xinjiang is basically the same,and the yield in South Xinjiang is slightly higher than in North Xinjiang,but cotton can not be planted in most farms of Division 9 and Division 10; oil crops are grown mainly in cold regions; sugar beet is mainly in the farms of Division 2,Division 4,Division 7 and Division 9. Some factors are limiting XPCC's farming development such as unreasonable agricultural structure,quite different regional production levels and great grain crop yield fluctuations. Therefore,it is recommended to optimize regional distribution,increase efforts to promote new technologies,and strengthen brand building to help XPCC to give play to the agricultural resource advantages.
基金Supported by Scientific Research Projects of College Students in Shandong Province:Reform of Rural Planting Structure in China since the Reform and Opening-up Based on an Oral Interview(18SSR021)
文摘Based on the oral interview of six different types of rural families in Houdian Village,Longkou City,Shandong Province,combined with the adjustment of rural reform policies,this paper analyzed reasons for the reform of rural planting structure in China since the reform and opening-up and elaborated the general outline of the reform of the planting structure.From the changes in farmers' attitudes,it explored the achievements and shortcomings of rural reform in the past 40 years.It discussed problems such as shortage of labor resources and vacancy of family education of teenagers in the current sustainable development of rural areas.Finally,it came up with some recommendations for the development of rural areas.
基金Supported by the National Social Science Foundation of China(08XRK004)the Research Base Program of Humanities and Social Sciences of Guizhou Provincial Department of Education (08JD093)
文摘Based on the survey data of 150 peasant households in typical Karst mountainous area in the year 2009, causations, characteristics and influence factors of the concurrent-business behavior of peasant households during planting structure adjustment are analyzed. Result shows that there is significant positive correlation between the concurrent-business income and the household income of farmers. And the concurrent-business behavior has the tendency to be popular among the young farmers with the characteristics of relative concentration, strong will of farmers and the significant impact of education degree on the concurrent-business income. Information, capital, skill, and market awareness are the main factors affecting the concurrent-business behavior of peasant households. Countermeasures to optimize the concurrent-business behavior of peasant households are put forward, such as strengthening the skills training for farmers to improve the cultural quality of peasant households, establishing modern rural financial service system to offer capital support for the development of peasant households, setting up information base of rural labor force to provide more information and channels for the concurrent-business behavior of peasant households, and enhancing the cultivation of farmers' market awareness to improve their ability to adapt to market economy.
文摘This paper focuses on how aging can affect performance of safety-related structures in nuclear power plant (NPP). Knowledge and assessment of impacts of aging on structures are essential to plant life extension analysis,especially performance to severe loadings such as loss-of-coolant-accidents or major seismic events. Plant life extension issues are of keen interest in countries (like the United States) which have a large,aging fleet of NPPs. This paper addresses the overlap and relationship of structure aging to severe loading performance,with particular emphasis on containment structures.
文摘[Objectives]To analyze and optimize the crop planting structure in Ningxia based on the shortage of water resources and the large proportion of agricultural water consumption in Ningxia.[Methods]The change trend of crop planting area and planting structure in Ningxia in 2004-2018 was analyzed,and a multi-objective optimization model was constructed with the objectives of maximum crop profit and minimum water demand.The STEM method was applied to solve the problem,and the optimization scheme of crop planting in Ningxia was obtained.[Results]In Ningxia in 2004-2018,the planting area showed the characteristics of"increase-decrease-increase";the area and proportion of cash crops were increasing,and the proportion of grain crops was gradually decreasing,but the proportion of crops with high water consumption was still high.After the planting structure was optimized,the economic benefit was increased by 34.85×10^(8) yuan,and the water demand was reduced by 3.9×10^(8) m^(3).[Conclusions]Under the premise of ensuring food security,the optimized scheme not only saves water resources but also obtains higher economic benefits.It provides a reference for alleviating water shortage and increasing farmers'income.
基金Supported by the Scientific Research Innovation Fund for the Youth of Hunan Academy of Forestry(2013LQJ13)~~
文摘Plants usually suffer drought stress during their growth process. As the photosynthetic activity center of plants, the leaf is the most sensitive organ under drought stress. In order to support the research on drought resistance of higher plants, this study reviewed the adaptation response and damage performance of epidermal structure, palisade tissue and spongy tissue, thickness, veins and stomata of plant leaves under drought stress.
文摘The flora of the Qinghai-Xizang Plateau belongs to the floristic subkingdom of the Holarctic plant kingdom. The Xizang part of this subkingdom can be divided into 4 plant regions. 1) the Yarlung Zangbo River valley region. There are 1,003 species of seed plants, making up 19.38% of the total species in Xizang, and 159 endemic species, 15.89% of the total seed plants. The flora originates mainly from the East Himalayas and the Hengduan Mountains. 2) The Tanggute region. There are 349 species of seed plants and 10 endemic species. The flora represents an intermediate one between the Qinghai-Xizang Plateau and the Hengduan Mountains.3) The Qiangtang region. There are 255 species of seed plants and 18 endemic species. The flora derived from the Himalayan flora and mixed with a great number of Tethysian elements. 4) the Ali region. There are 547 species of seed plants and 41 endemic species. The flora seems to be closely related to Tethysian one.
基金the State Key Program of the National Natural Science Fundation of China under Grant No.51138001the Science Fund for Creative Research Groups of the National Natural Science Foundation of China under Grant No.51421064+2 种基金the State Key Laboratory of Coastal and Offshore Engineering Young Scholars Innovation Fund(LY1609)the Fundamental Research Funds for the Central Universities under Grant No.DUT15TD17the Open Research Fund of Hunan Province Key Laboratory of Key Technologies for Water Power Resources Development under Grant No.PKLHD20130
文摘: Consideration of the dynamic effects of the site and structural parameter uncertainty is required by the standards for nuclear power plants (NPPs) in most countries. The anti-seismic standards provide two basic methods to analyze parameter uncertainty. Directly manually dealing with the calculated floor response spectra (FRS) values of deterministic approaches is the first method. The second method is to perform probability statistical analysis of the FRS results on the basis of the Monte Carlo method. The two methods can only reflect the overall effects of the uncertain parameters, and the results cannot be screened for a certain parameter's influence and contribution. In this study, based on the dynamic analyses of the floor response spectra of NPPs, a comprehensive index of the assessed impact for various uncertain parameters is presented and recommended, including the correlation coefficient, the regression slope coefficient and Tornado swing. To compensate for the lack of guidance in the NPP seismic standards, the proposed method can effectively be used to evaluate the contributions of various parameters from the aspects &sensitivity, acuity and statistical swing correlations. Finally, examples are provided to verify the set of indicators from systematic and intuitive perspectives, such as the uncertainty of the impact of the structure parameters and the contribution to the FRS of NPPs. The index is sensitive to different types of parameters, which provides a new technique for evaluating the anti-seismic parameters required for NPPs.
基金We thank the generations of Chinese botanists who have conducted extensive research on the plants in the study region.This study was supported by Key Program of National Natural Science Foundation China(No.41671038)National Key Research and Development Program of China(2017YFC0504801).
文摘Large-scale patterns of biodiversity and the underlying mechanisms that regulate these patterns are central topics in biogeography and macroecology.The Qinghai-Tibet Plateau serves as a natural laboratory for studying these issues.However,most previous studies have focused on the entire Qinghai-Tibet Plateau,leaving independent physical geographic subunits in the region less well understood.We studied the current plant diversity of the Kunlun Mountains,an independent physical geographic subunit located in northwestern China on the northern edge of the Qinghai-Tibet Plateau.We integrated measures of species distribution,geological history,and phylogeography,and analyzed the taxonomic richness,phylogenetic diversity,and community phylogenetic structure of the current plant diversity in the area.The distribution patterns of 1911 seed plants showed that species were distributed mainly in the eastern regions of the Kunlun Mountains.The taxonomic richness,phylogenetic diversity,and genera richness showed that the eastern regions of the Kunlun Mountains should be the priority area of biodiversity conservation,particularly the southeastern regions.The proportion of Chinese endemic species inhabiting the Kunlun Mountains and their floristic similarity may indicate that the current patterns of species diversity were favored via species colonization.The Hengduan Mountains,a biodiversity hotspot,is likely the largest source of species colonization of the Kunlun Mountains after the Quaternary.The net relatedness index indicated that 20 of the 28 communities examined were phylo-genetically dispersed,while the remaining communities were phylogenetically clustered.The nearest taxon index indicated that 27 of the 28 communities were phylogenetically clustered.These results suggest that species colonization and habitat filtering may have contributed to the current plant diversity of the Kunlun Mountains via ecological and evolutionary processes,and habitat filtering may play an important role in this ecological process.
基金supported by Natural Science Fund Project of Heilongjiang Province (41309602)
文摘Root length and root length density of Lespedeza bicolor,Amorpha fruticosa,and Sea buckthorn were investigated in a country highway-TongSan highway(Tongjiang to Sanya) in Heilongjiang Province,China.The root lengths were divided into five root orders according to Pregizter sequence classification method.Results show that sea buckthorn roots are dominated by coarse roots in the horizontal growth,while L.bicolor has a large proportion of fine roots in vertical conical growth and A.fruticosa is in depth growth.Root length density of L.bicolor in all the root sequences is higher than that of sea buckthorn and A.fruticosa.On the basis of the root structure,it is inferred that L.bicolor roots mainly absorb the surface soil moisture for its normal growth;in contrast,A.fruticosa has good uptake ability to deep soil water.The root structure of sea buckthorn implies that it has a strong drought resistance.
基金the General Project of Natural Science Research in Higher Education Institutions in Jiangsu Province,China(18KJB210003)the Natural Science Foundation of Jiangsu Province,China(BK20200112)the Postdoctoral Research Funding Scheme of Jiangsu Province,China(2018K067B).
文摘The leaf and stem types are core structural characteristics of the rice phenotype that determine the light interception ability of the canopy and directly affect crop yield.The PLANT ARCHITECTURE AND YIELD 1(PAY1)gene has been shown to alter the prostrate growth habit of wild rice and to inhibit the wild rice prostrate growth gene PROSTRATE GROWTH 1(PROG1).In this paper,the wild rice introgression line YIL55,which contains the PROG1 gene;its mutant,PAY1;and its parent,TQ,were used as test varieties to construct three-dimensional(3D)canopy structure models based on 3D digital assay technology.On this basis,quantitative analyses of the PAY1 gene and the plant leaf and stem types at the jointing,heading and filling stages were performed.Under the influence of the PAY1 gene,the plant stem and leaf angles from vertical decreased significantly;the plants were upright,with larger leaves;the culm angle changed from loose to compact;and the average tiller angle during the three key reproductive stages decreased from 44.9,28.5 and 21.3°to 17.6,8.4 and 10.5°,respectively.Moreover,the PAY1 mutant retained the PROG1 gene characteristic of exhibiting dynamic changes in the tiller angle throughout the growth period,and its culm angle changed from loose during the jointing stage to compact during the heading stage.The measurements of photosynthetically active radiation(PAR)in the canopy also showed that the mutant PAY1 allowed more PAR to reach the bottom of the canopy than the other varieties.The light-extinction coefficients for PAY1 at the jointing,heading and filling stages were 0.535,0.312 and 0.586,respectively,which were lower than those of the other two varieties.In this study,the influence of the PAY1 gene on rice canopy structural characteristics was quantitatively analyzed to provide effective canopy structure parameters for breeding the ideal plant type.
基金supported by the National Special Project of China for magnetic confined nuclear fusion energy(2015GB108004)
文摘For the solid blanket concept of helium cooled ceramic breeder (HCCB) demonstration fusion power plant (DEMO), a feasible blanket structure with configuration 2×X is proposed as considering relatively low temperature limit of neutron multiplier beryllium pebbles. Based on that, preliminary design for the typical blanket module of HCCB DEMO has been carried out and verified by thermal-hydraulic analysis and structural analysis. Furthermore, the specific relationship of maximum temperature depended on the surface heating of blanket key part first wall (FW) is also analyzed.
基金the Natural Science Foundation of Xinjiang Uygur Autonomous Region(2022D01A351)the Joint Fund of National Natural Science Foundation of China(U2003214)+1 种基金the Key Project of Xinjiang Uygur Autonomous Region Natural Science Foundation(2022D01D083)the Tianchi Talent Introduction Project of Xinjiang Uygur Autonomous Region.We thank Mr.LI Yonggang,Mrs.DU Fang,Mrs.SHEN Hui,Mrs.PAN Qi,and Mrs.MENG Huanhuan for providing help with the experiment in the field.
文摘Phyllosphere microorganisms are a crucial component of environmental microorganisms,highly influenced by host characteristics,and play a significant role in plant health and productivity.Nonetheless,the impact of host characteristics on shaping phyllosphere microbial communities of plants with different life forms remains ambiguous.Utilizing high-throughput sequencing technology,this study analyzed the diversity and community composition of phyllosphere epiphytic microorganisms(e.g.,bacteria and fungi)of various plant life forms in the hinterland of the Gurbantunggut Desert,Northwest China.Functional annotation of prokaryotic taxa(FAPROTAX)and fungi function guild(FUNGuild)were employed to assess the ecological functions of microorganisms and to investigate the role of stochastic and deterministic processes in shaping phyllosphere microbial communities.Result showed a diverse array of phyllosphere epiphytic microorganisms in the desert plants,with Proteobacteria,Cyanobacteria,and Actinobacteriota dominating bacterial community,while Ascomycota and Basidiomycota were prevalent in fungal community.Comparison across different plant life forms highlighted distinct microbial communities,indicating strong filtering effects by plant characteristics.FAPROTAX prediction identified intracellular parasites(accounting for 27.44%of bacterial community abundance),chemoheterotrophy(10.12%),and phototrophy(17.41%)as the main functions of epiphytic bacteria on leaves of different life form plants.FUNGuild prediction indicated that phyllosphere epiphytic fungi primarily served as Saprotrophs(81.77%),Pathotrophs(17.41%),and Symbiotrophs(0.82%).Co-occurrence network analysis demonstrated a predominance of positive correlations among different microbial taxa.Raup-Crick dissimilarity index analysis revealed that deterministic processes predominantly influenced phyllosphere bacterial and fungal community assembly.Variance partitioning analysis and random forest modeling suggested that plant leaf functional traits significantly impacted both bacterial and fungal community composition,with fungal community composition showing a closer association with leaf nutrients and physiology compared with bacterial community composition.The distinct responses of bacterial and fungal communities to plant traits were attributed to the differing properties of bacteria and fungi,such as bacteria having higher potential dispersal rates and broader ecological niches than fungi.Overall,the results indicate that phyllosphere bacterial and fungal communities undergo similar community assembly processes,with fungi being more influenced by plant characteristics than bacteria.These findings offer novel insights into the ecology of phyllosphere microbial communities of desert plants.