At present,the problem of heavy metal pollution in farmland in southern China is serious. Especially,the cadmium and lead are two heavy metal elements with serious pollution and great harm to human body. This paper re...At present,the problem of heavy metal pollution in farmland in southern China is serious. Especially,the cadmium and lead are two heavy metal elements with serious pollution and great harm to human body. This paper reviewed some common methods and materials used in the control of cadmium and lead pollution in farmland soil. Then,it discussed the problems in the repair of cadmium and lead pollution in farmland soil. It came up with the future research direction,to provide references for remediation of lead and cadmium pollution in farmland soil.展开更多
This paper discussed the optimization of conditions for remediation of crude oil-polluted soil based on pot experiment by applying reed-specific degrading bacteria, and using response surfaces methodology. We took the...This paper discussed the optimization of conditions for remediation of crude oil-polluted soil based on pot experiment by applying reed-specific degrading bacteria, and using response surfaces methodology. We took the initial crude oil concentration, the amount of inoculation, the ratio of nitrogen and phosphorus, and the use of surfactant (Tween-80) as independent variables (factors), and the degrading ratio of crude oil as the dependent variable (response) after a 90-day experiment. The experiment explored the impacts of each independent variable and their interactions on the bioremediation of crude oil-polluted soil using the Box-Behnken design. Working with a simulated forecasting model the study obtained optimization va reed+specific degrading bacteria, a nitrogen to phosphorus ues for the treatment parameters of 200 g/kg of the ratio of about 6.0. and 0.2% surfactant. Under experimental conditions, for crude oil concentrations of 10, 30 and 50 g/kg, the optimal effects of the treatments achieved 71.87%, 66.61% and 54.52% degradation of the crude oil, respectively. The results can provide a basis for the technical development of plant-microorganism combined bioremediation of crude oil-polluted soil.展开更多
This paper discussed current situations of researches about the isolation remediation technology " soil barrier and landfill technology" and " physical isolation remediation technology" for heavy m...This paper discussed current situations of researches about the isolation remediation technology " soil barrier and landfill technology" and " physical isolation remediation technology" for heavy metal contaminated soil in mining areas.In view of defects of current technologies,it introduced a new isolation remediation technology,of which the new isolation materials were mixed by slaked lime,soil,find sand,and clay mineral in certain proportion.The new isolation remediation technology is expected to realize isolation remediation of heavy metal combined pollution of soil through chemical passivation of slaked lime and physical adsorption function of clay minerals or activated carbons.展开更多
基金Supported by National Key Research and Development Program(2016YED0800705-01)Key Research and Development Program of Guangxi(AB16380084+2 种基金AB16380164)Scientific Research and Technological Development Program Project of Nanning City(20162105)Scientific Development Fund Project of Guangxi Academy of Agricultural Sciences(2017JM06)
文摘At present,the problem of heavy metal pollution in farmland in southern China is serious. Especially,the cadmium and lead are two heavy metal elements with serious pollution and great harm to human body. This paper reviewed some common methods and materials used in the control of cadmium and lead pollution in farmland soil. Then,it discussed the problems in the repair of cadmium and lead pollution in farmland soil. It came up with the future research direction,to provide references for remediation of lead and cadmium pollution in farmland soil.
基金supported by the Specialized Research Fund for the Basic Scientific Research of Higher Education of China (27R1204018A)
文摘This paper discussed the optimization of conditions for remediation of crude oil-polluted soil based on pot experiment by applying reed-specific degrading bacteria, and using response surfaces methodology. We took the initial crude oil concentration, the amount of inoculation, the ratio of nitrogen and phosphorus, and the use of surfactant (Tween-80) as independent variables (factors), and the degrading ratio of crude oil as the dependent variable (response) after a 90-day experiment. The experiment explored the impacts of each independent variable and their interactions on the bioremediation of crude oil-polluted soil using the Box-Behnken design. Working with a simulated forecasting model the study obtained optimization va reed+specific degrading bacteria, a nitrogen to phosphorus ues for the treatment parameters of 200 g/kg of the ratio of about 6.0. and 0.2% surfactant. Under experimental conditions, for crude oil concentrations of 10, 30 and 50 g/kg, the optimal effects of the treatments achieved 71.87%, 66.61% and 54.52% degradation of the crude oil, respectively. The results can provide a basis for the technical development of plant-microorganism combined bioremediation of crude oil-polluted soil.
基金Supported by Scientific Research Project of Shaanxi Province Land Engineering Construction Group(DJNY2017-13)
文摘This paper discussed current situations of researches about the isolation remediation technology " soil barrier and landfill technology" and " physical isolation remediation technology" for heavy metal contaminated soil in mining areas.In view of defects of current technologies,it introduced a new isolation remediation technology,of which the new isolation materials were mixed by slaked lime,soil,find sand,and clay mineral in certain proportion.The new isolation remediation technology is expected to realize isolation remediation of heavy metal combined pollution of soil through chemical passivation of slaked lime and physical adsorption function of clay minerals or activated carbons.