With the progress of science and technology and the acceleration of industrialization,the modern industrial park is an important carrier of industrial development.The importance of its standard plant design has become...With the progress of science and technology and the acceleration of industrialization,the modern industrial park is an important carrier of industrial development.The importance of its standard plant design has become increasingly prominent.With the development of new quality productive forces as the background,this research deeply discusses the key points of standard plant design in modern industrial parks.This paper uses literature review and case analysis to systematically analyze the important role of standard plant design in developing new quality productive forces in modern industrial parks and puts forward suggestions for optimizing design.It is found that the rationality,intelligence,and environmental protection of plant design are the key factors affecting the development of new quality productive forces.The paper summarizes the core points of modern industrial park standard plant design to provide a reference for the future development of related industries.展开更多
Courtyard is a signifi cant component of architectural design because it is an important living place that plays a positive role in improving the living environment. This paper reviewed basic principles of small court...Courtyard is a signifi cant component of architectural design because it is an important living place that plays a positive role in improving the living environment. This paper reviewed basic principles of small courtyard landscape design, and analyzed the way of integrating plants and other landscape elements in small courtyards.展开更多
The State Nuclear Power Technology Corporation (SNPTC), which is responsible for the development of third-generation nuclear power technology in China, has completed the preliminary designs
This paper mainly introduces the designand construction of the multi-flue chimneysof Beilungang Power Plant, ShidongkouSecond Power Plant and Waigaoqiao PowerPlant which have been used in East Chinaarea. This paper co...This paper mainly introduces the designand construction of the multi-flue chimneysof Beilungang Power Plant, ShidongkouSecond Power Plant and Waigaoqiao PowerPlant which have been used in East Chinaarea. This paper contains the generalsituation of construction, material selection,lifting scheme of steel inner flue, designfeatures and construction method. It could bereferential to concerned design andconstruction companies.展开更多
In this paper, the interference checking of three-dimensional objects within a plant is discussed and accomplished, which offers an automated solution to the design problems inherent in multi-user, multi-model environ...In this paper, the interference checking of three-dimensional objects within a plant is discussed and accomplished, which offers an automated solution to the design problems inherent in multi-user, multi-model environments. Also, the collision detection among moving objects is presented and discussed, and some new ideas are proposed. These methods are successfully applied in our Plant Design System (PDS) and are proven to be very practical and efficient.展开更多
Spray drying is an important continuous industrial process for drying pumpable liquid formulations irrespective of their heat sensitivity, rheology, solids content and processing rate. Furthermore spray drying has the...Spray drying is an important continuous industrial process for drying pumpable liquid formulations irrespective of their heat sensitivity, rheology, solids content and processing rate. Furthermore spray drying has the capability through drying chamber design, plant layout and mode of operation to produce dried products of specific particulate size and morphology. These are important aspects when spray drying technology is applied to the needs of customized powder manufacture. There are many examples in industry where spray dried powders have to meet stringent specifications set by such factors as end-product powder quality standards dictated by global competition,dry raw material characteristics required for optimum downstream processing, and dry materials handling to comply with environmental, health and safety issues. Spray drying is no longer regarded just as a convective industrial drying concept, but also as an integral part of modern manufacturing practices applying powder technology. This paper reviews the aspects of spray dryer design and operation for consideration when customized powder manufacture is involved.展开更多
On April 23,2009,a new single strand slab caster at ThyssenKrupp Acciai Speciali Terni(TKAST) was successfully started up with the first cast of AISI 304 grade in Terni plant,central Italy.TKAST is the Italian company...On April 23,2009,a new single strand slab caster at ThyssenKrupp Acciai Speciali Terni(TKAST) was successfully started up with the first cast of AISI 304 grade in Terni plant,central Italy.TKAST is the Italian company of ThyssenKrupp Stainless group. The new caster is designed for a total capacity of approx.900.000 tpy of stainless steel slabs covering the complete range of stainless grades,including AISI 300 and 400 families(austenitic,ferritic and martensitic grades).This state of the art caster for the production of 215 mm thick slabs replaced an existing thin slab caster. This paper resumes the reasons of the installation of the new plant designed,manufactured erected and commissioned by Danieli and describes the technological solution,main features as well as the excellent results of this state of the art caster.展开更多
Unlike most animals,plants fail to move bodily at will.However,movements also occur in every single part of plants out of energy and nutrients needs,spanning from milliseconds to hours on a time scale.And with the gro...Unlike most animals,plants fail to move bodily at will.However,movements also occur in every single part of plants out of energy and nutrients needs,spanning from milliseconds to hours on a time scale.And with the growing understanding of plant movement in the academic community,bionic soft robots based on plant movement principles are increasingly studied and are considered by scientists as a source of inspiration for innovative engineering solutions.In this paper,through the study of the biological morphology,microstructure,and motion mechanism of the flytrap,we developed chambered design rules,and designed and fabricated a gas-driven bionic flytrap blade,intending to investigate its feasibility of performing complex bending deformation.The experimental result shows that the bionic flytrap blade can achieve multi-dimensional bending deformation,and complete the bending and closing action within 2 s.The performance of the bionic flytrap blade fabricated is in high agreement with the real flytrap blade in terms of bending and deformation,achieving an excellent bionic design effect.In this study,the chambered design rules of the bionic flytrap blade were proposed and developed,and the possibility of its deformation was investigated.The effects of different chamber types and different flow channel design precepts on the bending deformation of the bionic flytrap blade were revealed,together with the relationship between the response time and flow rate of the bionic flytrap blade.At last,this study provides new ideas for the study of plant blade motion mechanism in a hope to expand the application fields of bionic robots,especially hope to offer solutions for plant-type robotics.展开更多
Urban vegetation is a nature-based solution for cooling cities.Under global warming and urban population growth,it is essential to optimize urban vegetation configuration in the urban area to bring maximum cooling ben...Urban vegetation is a nature-based solution for cooling cities.Under global warming and urban population growth,it is essential to optimize urban vegetation configuration in the urban area to bring maximum cooling benefit.This paper reviews 85 optimized urban vegetation configuration studies published from 2010 to 2020 to provide an insight into the most effective vegetation configuration for urban heat mitigation.Patterns and preferences in methods and the optimized greenery configurations are comprehensively analyzed.The results indicate that size,quantity,and layout of urban green space and the physiological characteristics and spatial arrangement of urban vegetation significantly influence their cooling effect.Additionally,two other research gaps were identified.First,more research needs to be done in southern hemisphere cities experiencing rapid urbanization and severe impacts of extreme weather.Second,a comprehensive method for quantifying interactions and cumulative effects of natural and artificial factors in the urban environment is required.Future study needs a holistic understanding of the interactive effects of vegetation spatial distribution on urban environment and climate for a more accurate analysis of optimal cooling greening layouts in large urban areas at multi-scales.展开更多
The current Russian regulatory documents on the safety of nuclear power plant(NPP)specify the requirements regarding design basis accidents(DBAs)and beyond design basis accidents(BDBAs),including severe accidents(SAs)...The current Russian regulatory documents on the safety of nuclear power plant(NPP)specify the requirements regarding design basis accidents(DBAs)and beyond design basis accidents(BDBAs),including severe accidents(SAs)with core meltdown,in NPP design(NP-001-15,NP-082-07,and others).For a rigorous calculational justification of BDBAs and SAs,it is necessary to develop an integral CC that will be in line with the requirements of regulatory documents on verification and certification(RD-03-33-2008,RD-03-34-2000)and will allow for determining the amount of data required to provide information within the scope stipulated by the requirements for the structure of the safety analysis report(SAR)(NP-006-16).The system of codes for realistic analysis of severe accidents(SOCRAT)(formerly,thermohydraulics(RATEG)/coupled physical and chemical processes(SVECHA)/behavior of core materials relocated into the reactor lower plenum(HEFEST))was developed in Russia to analyze a wide range of SAs at NPP with water-cooled water-moderated power-generating reactor(WWER)at all stages of the accident.Enhancements to the code and broadening of its applicability are continually being pursued by the code developers(Nuclear Safety Institute of the Russian Academy of Sciences(IBRAE RAN))with OKB Gidropress JSC and other organizations.Currently,the SOCRAT/В1 code can be used as a base tool to obtain realistic estimates for all parameters important for computational justification of the reactor plant(RP)safety at the in-vessel stage of SAs with fuel melting.To perform analyses using CC SOCRAT/В1,the experience gained during execution of thermohydraulic codes is applied,which allows for minimizing the uncertainties in the results at the early stage of an accident scenario.This study presents the results of the work performed in 2010–2020 in OKB Gidropress JSC using the CC SOCRAT/В1.Approaches have been considered to develop calculational models and analyze SAs using CC SOCRAT.This process,which is clearly structured in OKB Gidropress JSC,provides a noticeable reduction in human involvement,and reduces the probability of erroneous results.This study represents the principal results of the work performed in 2010–2020 in OKB Gidropress JSC using the CC SOCRAT,as well as a list of the tasks planned for 2021–2023.CC SOCRAT/B1 is used as the base thermohydraulic SAs code.展开更多
文摘With the progress of science and technology and the acceleration of industrialization,the modern industrial park is an important carrier of industrial development.The importance of its standard plant design has become increasingly prominent.With the development of new quality productive forces as the background,this research deeply discusses the key points of standard plant design in modern industrial parks.This paper uses literature review and case analysis to systematically analyze the important role of standard plant design in developing new quality productive forces in modern industrial parks and puts forward suggestions for optimizing design.It is found that the rationality,intelligence,and environmental protection of plant design are the key factors affecting the development of new quality productive forces.The paper summarizes the core points of modern industrial park standard plant design to provide a reference for the future development of related industries.
文摘Courtyard is a signifi cant component of architectural design because it is an important living place that plays a positive role in improving the living environment. This paper reviewed basic principles of small courtyard landscape design, and analyzed the way of integrating plants and other landscape elements in small courtyards.
文摘The State Nuclear Power Technology Corporation (SNPTC), which is responsible for the development of third-generation nuclear power technology in China, has completed the preliminary designs
文摘This paper mainly introduces the designand construction of the multi-flue chimneysof Beilungang Power Plant, ShidongkouSecond Power Plant and Waigaoqiao PowerPlant which have been used in East Chinaarea. This paper contains the generalsituation of construction, material selection,lifting scheme of steel inner flue, designfeatures and construction method. It could bereferential to concerned design andconstruction companies.
文摘In this paper, the interference checking of three-dimensional objects within a plant is discussed and accomplished, which offers an automated solution to the design problems inherent in multi-user, multi-model environments. Also, the collision detection among moving objects is presented and discussed, and some new ideas are proposed. These methods are successfully applied in our Plant Design System (PDS) and are proven to be very practical and efficient.
文摘Spray drying is an important continuous industrial process for drying pumpable liquid formulations irrespective of their heat sensitivity, rheology, solids content and processing rate. Furthermore spray drying has the capability through drying chamber design, plant layout and mode of operation to produce dried products of specific particulate size and morphology. These are important aspects when spray drying technology is applied to the needs of customized powder manufacture. There are many examples in industry where spray dried powders have to meet stringent specifications set by such factors as end-product powder quality standards dictated by global competition,dry raw material characteristics required for optimum downstream processing, and dry materials handling to comply with environmental, health and safety issues. Spray drying is no longer regarded just as a convective industrial drying concept, but also as an integral part of modern manufacturing practices applying powder technology. This paper reviews the aspects of spray dryer design and operation for consideration when customized powder manufacture is involved.
文摘On April 23,2009,a new single strand slab caster at ThyssenKrupp Acciai Speciali Terni(TKAST) was successfully started up with the first cast of AISI 304 grade in Terni plant,central Italy.TKAST is the Italian company of ThyssenKrupp Stainless group. The new caster is designed for a total capacity of approx.900.000 tpy of stainless steel slabs covering the complete range of stainless grades,including AISI 300 and 400 families(austenitic,ferritic and martensitic grades).This state of the art caster for the production of 215 mm thick slabs replaced an existing thin slab caster. This paper resumes the reasons of the installation of the new plant designed,manufactured erected and commissioned by Danieli and describes the technological solution,main features as well as the excellent results of this state of the art caster.
基金the National Natural Science Foundation of China,51905084the Natural Science Foundation of Heilongjiang Province,YQ2021E002.
文摘Unlike most animals,plants fail to move bodily at will.However,movements also occur in every single part of plants out of energy and nutrients needs,spanning from milliseconds to hours on a time scale.And with the growing understanding of plant movement in the academic community,bionic soft robots based on plant movement principles are increasingly studied and are considered by scientists as a source of inspiration for innovative engineering solutions.In this paper,through the study of the biological morphology,microstructure,and motion mechanism of the flytrap,we developed chambered design rules,and designed and fabricated a gas-driven bionic flytrap blade,intending to investigate its feasibility of performing complex bending deformation.The experimental result shows that the bionic flytrap blade can achieve multi-dimensional bending deformation,and complete the bending and closing action within 2 s.The performance of the bionic flytrap blade fabricated is in high agreement with the real flytrap blade in terms of bending and deformation,achieving an excellent bionic design effect.In this study,the chambered design rules of the bionic flytrap blade were proposed and developed,and the possibility of its deformation was investigated.The effects of different chamber types and different flow channel design precepts on the bending deformation of the bionic flytrap blade were revealed,together with the relationship between the response time and flow rate of the bionic flytrap blade.At last,this study provides new ideas for the study of plant blade motion mechanism in a hope to expand the application fields of bionic robots,especially hope to offer solutions for plant-type robotics.
基金The research is based on a PhD program of James Cook University(JCU)and partly supported by James Cook University Postgraduate Research Scholarship(JCUPRS)and the College of Science and Engineering Competitive Research Training Grant(CRTG)of JCU.
文摘Urban vegetation is a nature-based solution for cooling cities.Under global warming and urban population growth,it is essential to optimize urban vegetation configuration in the urban area to bring maximum cooling benefit.This paper reviews 85 optimized urban vegetation configuration studies published from 2010 to 2020 to provide an insight into the most effective vegetation configuration for urban heat mitigation.Patterns and preferences in methods and the optimized greenery configurations are comprehensively analyzed.The results indicate that size,quantity,and layout of urban green space and the physiological characteristics and spatial arrangement of urban vegetation significantly influence their cooling effect.Additionally,two other research gaps were identified.First,more research needs to be done in southern hemisphere cities experiencing rapid urbanization and severe impacts of extreme weather.Second,a comprehensive method for quantifying interactions and cumulative effects of natural and artificial factors in the urban environment is required.Future study needs a holistic understanding of the interactive effects of vegetation spatial distribution on urban environment and climate for a more accurate analysis of optimal cooling greening layouts in large urban areas at multi-scales.
文摘The current Russian regulatory documents on the safety of nuclear power plant(NPP)specify the requirements regarding design basis accidents(DBAs)and beyond design basis accidents(BDBAs),including severe accidents(SAs)with core meltdown,in NPP design(NP-001-15,NP-082-07,and others).For a rigorous calculational justification of BDBAs and SAs,it is necessary to develop an integral CC that will be in line with the requirements of regulatory documents on verification and certification(RD-03-33-2008,RD-03-34-2000)and will allow for determining the amount of data required to provide information within the scope stipulated by the requirements for the structure of the safety analysis report(SAR)(NP-006-16).The system of codes for realistic analysis of severe accidents(SOCRAT)(formerly,thermohydraulics(RATEG)/coupled physical and chemical processes(SVECHA)/behavior of core materials relocated into the reactor lower plenum(HEFEST))was developed in Russia to analyze a wide range of SAs at NPP with water-cooled water-moderated power-generating reactor(WWER)at all stages of the accident.Enhancements to the code and broadening of its applicability are continually being pursued by the code developers(Nuclear Safety Institute of the Russian Academy of Sciences(IBRAE RAN))with OKB Gidropress JSC and other organizations.Currently,the SOCRAT/В1 code can be used as a base tool to obtain realistic estimates for all parameters important for computational justification of the reactor plant(RP)safety at the in-vessel stage of SAs with fuel melting.To perform analyses using CC SOCRAT/В1,the experience gained during execution of thermohydraulic codes is applied,which allows for minimizing the uncertainties in the results at the early stage of an accident scenario.This study presents the results of the work performed in 2010–2020 in OKB Gidropress JSC using the CC SOCRAT/В1.Approaches have been considered to develop calculational models and analyze SAs using CC SOCRAT.This process,which is clearly structured in OKB Gidropress JSC,provides a noticeable reduction in human involvement,and reduces the probability of erroneous results.This study represents the principal results of the work performed in 2010–2020 in OKB Gidropress JSC using the CC SOCRAT,as well as a list of the tasks planned for 2021–2023.CC SOCRAT/B1 is used as the base thermohydraulic SAs code.