Cadmium sulfide(CdS)is an n-type semiconductor with excellent electrical conductivity that is widely used as an electron transport material(ETM)in solar cells.At present,numerous methods for preparing CdS thin films h...Cadmium sulfide(CdS)is an n-type semiconductor with excellent electrical conductivity that is widely used as an electron transport material(ETM)in solar cells.At present,numerous methods for preparing CdS thin films have emerged,among which magnetron sputtering(MS)is one of the most commonly used vacuum techniques.For this type of technique,the substrate temperature is one of the key deposition parameters that affects the interfacial properties between the target film and substrate,determining the specific growth habits of the films.Herein,the effect of substrate temperature on the microstructure and electrical properties of magnetron-sputtered CdS(MS-CdS)films was studied and applied for the first time in hydrothermally deposited antimony selenosulfide(Sb_(2)(S,Se)_(3))solar cells.Adjusting the substrate temperature not only results in the design of the flat and dense film with enhanced crystallinity but also leads to the formation of an energy level arrangement with a Sb_(2)(S,Se)_(3)layer that is more favorable for electron transfer.In addition,we developed an oxygen plasma treatment for CdS,reducing the parasitic absorption of the device and resulting in an increase in the short-circuit current density of the solar cell.This study demonstrates the feasibility of MS-CdS in the fabrication of hydrothermal Sb_(2)(S,Se)_(3)solar cells and provides interface optimization strategies to improve device performance.展开更多
This study focuses on treating Guadua angustifolia bamboo fibers to enhance their properties for reinforcement applications in composite materials.Chemical(alkali)and physical(dry etching plasma)treatments were used s...This study focuses on treating Guadua angustifolia bamboo fibers to enhance their properties for reinforcement applications in composite materials.Chemical(alkali)and physical(dry etching plasma)treatments were used separately to augment compatibility of Guadua angustifolia fibers with various composite matrices.The influence of these treatments on the fibers’performance,chemical composition,and surface morphology were analyzed.Statistical analysis indicated that alkali treatments reduced the tensile modulus of elasticity and strength of fibers by up to 40%and 20%,respectively,whereas plasma treatments maintain the fibers’mechanical performance.FTIR spectroscopy revealed significant alterations in chemical composition due to alkali treatments,while plasma-treated fibers showed minimal changes.Surface examination through Scanning Electron Microscopy(SEM)revealed post-treatment modifications in both cases;alkali treatments served as a cleanser,eliminating lignin and hemicellulose from the fiber surface,whereas plasma treatments also produce rough surfaces.These results validate the impact of the treatments on the fiber mechanical performance,which opens up possibilities for using Guadua angustifolia fibers as an alternative reinforcement in composite manufacturing.展开更多
As a promising cancer treatment method,cold atmospheric plasma has received widespread attention in recent years.However,previous research has focused more on how to realize and expand the anti-cancer scope of plasma ...As a promising cancer treatment method,cold atmospheric plasma has received widespread attention in recent years.However,previous research has focused more on how to realize and expand the anti-cancer scope of plasma jet.There are also studies on the killing of small-scale cancer cells,but the effects of plasma jet on normal cells and normal cell clusters have been ignored.Therefore,we proposed a 50μm sized micro-plasma jet device,and used the device to treat melanoma cells(A-375)and human glial cells(HA1800)to evaluate their anti-cancer effects and effects on normal cells.The experimental results show that this kind of micro-plasma jet device can effectively inactivate cancer cells in a short period of time,while having little effect on normal cells.This work provides a certain experimental basis for the application offine plasma jet to clinically inactivate cancer cells.展开更多
Cold plasma technology was used to treat the surface of carbon fibers braided by PET in this paper and SEM was used to analyze the fracture microstructure of composite interlaminar shear stress (ILSS). The result show...Cold plasma technology was used to treat the surface of carbon fibers braided by PET in this paper and SEM was used to analyze the fracture microstructure of composite interlaminar shear stress (ILSS). The result shows that the surface polarity of carbon fibers was modified by cold plasma treatment, which increases the impregnation of PET braided carbon fibers during the process of resin flowing, improves the interfacial properties of RTM composites, and therefore enhances the mechanical properties of the KTM composites.展开更多
Commercial carbon cloth(CC)is an ideal electrocatalysis material to produce oxygen evolution reaction(OER)due to its high conductive and 3D flexible structure,but the lacked active sites limit its application.For impr...Commercial carbon cloth(CC)is an ideal electrocatalysis material to produce oxygen evolution reaction(OER)due to its high conductive and 3D flexible structure,but the lacked active sites limit its application.For improving its OER performance,the present study proposed an effective method combining plasma and acid treatment to introduce oxygen-containing functional groups and produce more active sites on its surface.Compared to the pristine CC,the plasma and acid treated carbon cloth(PN-CC)delivers a reduced overpotential by 34.6%to achieve current density of 10 mA cm^(−2).The Tafel slope declines from 97.5 mV dec^(–1)(pristine CC)to 55.9 mV dec–1(PN-CC),showing an increased OER kinetic.Additionally,PN-CC electrocatalyst shows outstanding stability after 5000 cycles or 25000 s.The combination of plasma and acid treatment shows a significant potential in surface modification for electrocatalysts.展开更多
In this study, commercial biaxially oriented polypropylene (BOPP), polyvinyl chlo- ride (PVC) and poly (methyl methacrylate) (PMMA) films were treated with nitrogen plasma over different exposure times in a Py...In this study, commercial biaxially oriented polypropylene (BOPP), polyvinyl chlo- ride (PVC) and poly (methyl methacrylate) (PMMA) films were treated with nitrogen plasma over different exposure times in a Pyrex tube surrounded by a DC variable magnetic field. The chemi- cal changes that appeared on the surface of the samples were investigated using Fourier transform infrared (FT4R) spectroscopy and attenuated total reflectance Fourier transform infrared (ATR- FTIR) spectroscopy after treatment for 2 min, 4 min and 6 rain in a nitrogen plasma chamber. Effects of the plasma treatment on the surface topographies and contact angles of the untreated and plasma treated films were also analyzed by atomic force microscopy (AFM) and a contact angle measuring system. The results show that the plasma treated films become more hydrophilic with an enhanced wettability due to the formation of some new polar groups on the surface of the treated films. Moreover, at higher exposure times, the total surface energy in all treated films increased while a reduction in contact angle occurred. The behavior of surface roughness in each sample was completely different at higher exposure times.展开更多
This study investigated the effect of cold helium plasma treatment on seed germina- tion, growth and yield of wheat. The effects of different power of cold plasma on the germination of treated wheat seeds were studied...This study investigated the effect of cold helium plasma treatment on seed germina- tion, growth and yield of wheat. The effects of different power of cold plasma on the germination of treated wheat seeds were studied. We found that the treatment of 80 W could significantly improve seed germination potential (6.0%) and germination rate (6.7%) compared to the control group. Field experiments were carried out for wheat seeds treated with 80 W cold plasma. Com- pared with the control, plant height (20.3%), root length (9.0%) and fresh weight (21.8%) were improved significantly at seedling stage. At booting stage, plant height, root length, fresh weight, stem diameter, leaf area and leaf thickness of the treated plant were respectively increased by 21.8%, 11.0%, 7.0%, 9.0%, 13.0% and 25.5%. At the same time, the chlorophyll content (9.8%), nitrogen (10.0%) and moisture content (10.0%) were higher than those of the control, indicating that cold plasma treatment could promote the growth of wheat. The yield of treated wheat was 7.55 t-ha-1, 5.89% more than that of the control. Therefore, our results show that cold plasma has important application prospects for increasing wheat yield.展开更多
Novel catalysts of phosphotungstic heteropolyacids (PW12) supported on neutral alumina were prepared by assistance of ultrasound and plasma treatment. The prepared catalysts were characterized by FT-IR pyridine adso...Novel catalysts of phosphotungstic heteropolyacids (PW12) supported on neutral alumina were prepared by assistance of ultrasound and plasma treatment. The prepared catalysts were characterized by FT-IR pyridine adsorption (Py-IR), temperature programmed desorption of Pyridine (Py-TPD), BET and X-ray diffraction (XRD), and their catalytic performances were evaluated by the cationic polymerization of tetrahydrofuran. The results indicate that plasma treatment remarkably increases the surface acidity of the prepared catalyst while ultrasonic treatment induces PW12 to uniformly disperse on the support surface and expose more active sites for the acid catalytic reaction. A higher catalytic activity (69.7%) is obtained on the novel catalyst, which significantly outstripped that on the conventional sample (57.5%).展开更多
The 10%Ni/Al_2O_3 catalyst for partial oxidation of methane was treated byDBD (dielectric barrier discharge) plasma in a continuous system under atmospheric pressure and roomtemperature by flowing He. It was found tha...The 10%Ni/Al_2O_3 catalyst for partial oxidation of methane was treated byDBD (dielectric barrier discharge) plasma in a continuous system under atmospheric pressure and roomtemperature by flowing He. It was found that 10%Ni/Al_2O_3 catalyst treated by plasma presents ahigher catalytic activity and an enhanced stability than the catalysts prepared without plasmatreatment. The methane conversion over the catalyst treated by plasma is 3%-5% higher than thecatalysts untreated by plasma. Moreover, the enhanced dispersion of the catalyst can be achieved byplasma treatment, which can improve the interaction between active species and supports, catalyticactivity and the resistance to carbon deposition.展开更多
Plasma treatment can be used to modify the structure of natural fibre like jute for a variety of applications. Environmentally friendly jute fibre was treated with argon and oxygen plasma. The treated samples were cha...Plasma treatment can be used to modify the structure of natural fibre like jute for a variety of applications. Environmentally friendly jute fibre was treated with argon and oxygen plasma. The treated samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and optical microscope. The macromolecular and microstructural changes in cellulose confirmed the change by plasma treatment. The XRD results confirmed that the crystal size and the crystallinity of the plasma treated fibre increased. Argon plasma treated fibre had a smooth and compact surface, compared to oxygen plasma treated fibre. The maximum stain (i.e. stress) concentrated in the oxygen plasma treated fibre. Optical micrographs showed the oxygen plasma treated fibre tended to rupture due to higher strain (i.e., stress) compared to fibre with argon plasma treatment. FTIR results also provided the evidence of change in the chemical constituents with plasma treatment.展开更多
This paper reports fluorine plasma treatment enhancement-mode HEMTs (high electronic mobility transistors) EHEMTs and conventional depletion-mode HEMTs DHEMTs fabricated on one wafer using separate litho-photography...This paper reports fluorine plasma treatment enhancement-mode HEMTs (high electronic mobility transistors) EHEMTs and conventional depletion-mode HEMTs DHEMTs fabricated on one wafer using separate litho-photography technology. It finds that fluorine plasma etches the AlGaN at a slow rate by capacitance-voltage measurement. Using capacitance-frequency measurement, it finds one type of trap in conventional DHEMTs with TT = (0.5 - 6) ms and DT : (1 - 5)×10^13 cm^-2. eV^-1. Two types of trap are found in fluorine plasma treatment EHEMTs, fast with TW(f)= (0.2 - 2) μs and slow with TT(s) = (0.5 - 6) ms. The density of trap states evaluated on the EHEMTs is Dw(f) : (1 - 3) × 10^12 cm^-2. eV^-1 and DT(s) =(2 - 6) × 10^12 cm-2. eV-1 for the fast and slow traps, respectively. The result shows that the fluorine plasma treatment reduces the slow trap density by about one order, but introduces a new type of fast trap. The slow trap is suggested to be a surface trap, related to the gate leakage current.展开更多
Microbial contamination induces surface deformations and strength degradation of cotton fabrics by invading deeply into the fibers. In this study, the sterilization effects of low pressure plasmas on bacteria-inoculat...Microbial contamination induces surface deformations and strength degradation of cotton fabrics by invading deeply into the fibers. In this study, the sterilization effects of low pressure plasmas on bacteria-inoculated cotton fabrics were investigated. Oxygen plasma treatment completely sterilized the cotton fabrics inoculated with various concentrations of staphylococcus aureus. Also, the influence of plasma treatment on physical properties of fabrics was examined. It was found that the plasma treatment did not affect ultimate tensile strength and surface morphology of the fabrics because it took advantage of relatively low plasma temperature.展开更多
This paper presents the results of aluminum surface treatment by diffuse coplanar surface barrier discharge. The goals are to study the effectiveness of the plasma treatment and the dependence of its efficiency on ope...This paper presents the results of aluminum surface treatment by diffuse coplanar surface barrier discharge. The goals are to study the effectiveness of the plasma treatment and the dependence of its efficiency on operation parameters, such as sample-to-electrode distance, treatment time or gas atmosphere. Three types of aluminum materials (bricks, sheets and thin films) were tested to ensure the reliability of the treatment. The changes in the surface properties were characterized by the surface free energy, atomic force microscopy, attenuated total reflectance Fourier transform infrared spectroscopy (ATR FTIR) and X-ray photoelectron spec- troscopy (XPS). The influence of aging effect on the treatment was also measured and discussed.展开更多
To reduce time and energy during thermal binder removal in the ceramic process, plasma surface treatment was applied before the lamination process.The adhesion strength in the lamination films was enhanced by oxidativ...To reduce time and energy during thermal binder removal in the ceramic process, plasma surface treatment was applied before the lamination process.The adhesion strength in the lamination films was enhanced by oxidative plasma treatment of the porous green ceramic film with polymeric binding materials.The oxygen plasma characteristics were investigated through experimental parameters and weight loss analysis.The experimental results revealed the need for parameter analysis,including gas material,process time,flow rate,and discharge power,and supported a mechanism consisting of competing ablation and deposition processes.The weight loss analysis was conducted for cyclic plasma treatment rather than continuous plasma treatment for the purpose of improving the film’s permeability by suppressing deposition of the ablated species.The cyclic plasma treatment improved the permeability compared to the continuous plasma treatment.展开更多
Lithium(Li)metal is an attractive anode material with high capacity(3860 mAh g^(−1))and low potential(−3.04 V vs.standard hydrogen electrode)that shows highly promising for applications requiring high energy density.H...Lithium(Li)metal is an attractive anode material with high capacity(3860 mAh g^(−1))and low potential(−3.04 V vs.standard hydrogen electrode)that shows highly promising for applications requiring high energy density.However,the low electrochemical potential of Li metal makes it extremely reactive and inevitably forming a native oxidized layer in the ambient environment and repeatedly being consumed when exposed to liquid electrolytes.It is therefore beneficial to replace the poorly controlled native passivation layer with a tailored artificial SEI to improve interface management between Li and electrolyte and enhance the stability of Li metal battery.Here,we use an integrated glovebox-atomic layer deposition(ALD)-X-ray photoelectron spectroscopy(XPS)setup to in-situ investigating the pristine Li surface and the surface composition after Ar,H_(2)O_(2),N_(2)and NH_(3)plasma treatment processes.We find that the pristine Li foil is naturally being covered with a native oxidized layer,which is mainly composed of LiOH,Li_(2)O and Li_(2)CO_(3).These investigated plasmas can efficiently remove the oxidized layer from the Li metal surface,in which metallic Li surface is obtained after Ar or H2 plasma treatments,where Ar plasma is more efficient.While O_(2)plasma treatment produces a Li_(2)O layer,and N_(2)or NH_(3)plasma treatment leads to a Li3N(including a certain amount of LiON)layer on the Li surface.When employing the representative metallic Li(by Ar plasma treatment),Li_(2)O layer coated Li(by O_(2)plasma treatment)and Li3N layer coated Li(by N_(2)plasma treatment)foils as electrodes in symmetric Li metal batteries,the Li3N coated Li electrode exhibits much higher stability than that of metallic and Li_(2)O layer coated Li foils.Improved electrochemical performance has also been achieved in LiMn_(2)O_(4)(LMO)||Li full cells using Li anode with Li3N protective coating layer.Our work reveals the detailed process of surface engineering of Li metal anodes with plasma treatments by in vacuo XPS,which may also be extended to other gas-treatment or plasma-treatment for stabilization of high energy density Li metal anodes and other metal-based anodes.展开更多
An experiment and analysis on removal of gaseous benzene by pulse corona induced-plasma is presented in this article. Important parameters effecting removal efficiency have been investigated, such as pulse peak voltag...An experiment and analysis on removal of gaseous benzene by pulse corona induced-plasma is presented in this article. Important parameters effecting removal efficiency have been investigated, such as pulse peak voltage, pulse frequency, gas inlet concentration, gas flow rate and reactor temperature. The result shows that the removal efficiency increases with the increase in pulse peak voltage, pulse frequency and reactor temperature, but decreases in the rise of gas inlet concentration and gas flow rate. On the condition of Vp= 36 kV, f= 80 Hz, C=1440 mg/m3 and Q=640 ml/min, the largest removal efficiency is 98%. Finally, the reacted products are qualitatively analysed and the reaction processes are deduced in combination with plasma-chemistry theory.展开更多
High-k gate dielectric Hf Ti ON Ga As metal-oxide–semiconductor(MOS) capacitors with La ON as interfacial passivation layer(IPL) and NH3- or N2-plasma surface pretreatment are fabricated, and their interfacial an...High-k gate dielectric Hf Ti ON Ga As metal-oxide–semiconductor(MOS) capacitors with La ON as interfacial passivation layer(IPL) and NH3- or N2-plasma surface pretreatment are fabricated, and their interfacial and electrical properties are investigated and compared with their counterparts that have neither La ON IPL nor surface treatment. It is found that good interface quality and excellent electrical properties can be achieved for a NH3-plasma pretreated Ga As MOS device with a stacked gate dielectric of Hf Ti ON/La ON. These improvements should be ascribed to the fact that the NH3-plasma can provide H atoms and NH radicals that can effectively remove defective Ga/As oxides. In addition, La ON IPL can further block oxygen atoms from being in-diffused, and Ga and As atoms from being out-diffused from the substrate to the high-k dielectric. This greatly suppresses the formation of Ga/As native oxides and gives rise to an excellent high-k/Ga As interface.展开更多
An environmental and economic assessment of the development of a plasma-chemical reactor equipped with plasma torches for the environmentally friendly treatment of waste streams by plasma is outlined with a view to th...An environmental and economic assessment of the development of a plasma-chemical reactor equipped with plasma torches for the environmentally friendly treatment of waste streams by plasma is outlined with a view to the chemical and energetic valorization of the sustainability in the Kingdom of Saudi Arabia(KSA). This is especially applicable in the pilgrimage season in the city of Makkah, which is a major challenge since the amount of waste was estimated at about 750 thousand tons through Arabic Year 1435 H(2015), and is growing at a rate of 3%–5% annually. According to statistics, the value of waste in Saudi Arabia ranges between 8 and 9 billion EUR. The Plasma-Treatment Project(PTP) encompasses the direct plasma treatment of all types of waste(from source and landfill), as well as an environmental vision and economic evaluation of the use of the gas produced for fuel and electricity production in KSA, especially in the pilgrimage season in the holy city Makkah. The electrical power required for the plasmatreatment process is estimated at 5000 kW(2000 kW used for the operation of the system and 3000 kW sold), taking into account the fact that:(1) the processing capacity of solid waste is 100 tons per day(2) and the sale of electricity amounts to 23.8 MW at 0.18 EUR per kWh.(3) The profit from the sale of electricity per year is estimated at 3.27 million EUR and the estimated profit of solid-waste treatment amounts to 6 million EUR per year and(4) the gross profit per ton of solid waste totals 8 million EUR per year. The present article introduces the first stage of the PTP, in Makkah in the pilgrimage season, which consists of five stages:(1) study and treatment of waste streams,(2) slaughterhouse waste treatment,(3) treatment of refuse-derived fuel,(4)treatment of car tires and(5) treatment of slag(the fifth stage associated with each stage from the four previous stages).展开更多
Catalysis and regeneration efficiency of granular activated carbon (GAC) and activated carbon fiber (ACF) were investigated in a non-equilibrium plasma water treatment reactor with a combination of pulsed streamer...Catalysis and regeneration efficiency of granular activated carbon (GAC) and activated carbon fiber (ACF) were investigated in a non-equilibrium plasma water treatment reactor with a combination of pulsed streamer discharge and GAC or ACF. The experimental results show that the degradation efficiency of methyl orange (MO) by the combined treatment can increase 22% (for GAC) and 24% (for ACF) respectively compared to pulsed discharge treatment alone, indicating that the combined treatment has a synergetic effect. The MO degradation efficiency by the combined treatment with pulsed discharge and saturated GAC or ACF can increase 12% and 17% respectively compared to pulsed discharge treatment alone. Both GAC and ACF show catalysis and the catalysis of ACF is prominent. Meanwhile, the regeneration of GAC and ACF are realized in this process. When H202 is introduced into the system, the utilization efficiency of ozone and ultraviolet light is improved and the regeneration efficiency of GAC and ACF is also increased.展开更多
This paper describes the electroless Ni or Cu plating of some fiuoropolymer substrates through a tin-free activation process. Materials subjected to surface metallization are commercial Teflon() FEP, Nafion(), ACLAR()...This paper describes the electroless Ni or Cu plating of some fiuoropolymer substrates through a tin-free activation process. Materials subjected to surface metallization are commercial Teflon() FEP, Nafion(), ACLAR() and LaRCTM-CP1 thin films which have recently gained a large scientific and technological interest due to their excellent thermal, chemical, mechanical and dielectric properties. The original approach implemented in the present work involves: (i)the grafting of nitrogen-containing functionalities on the polymer surfaces through plasma treatments in ammonia, (ii) the direct catalysis of the so-modified surfaces via their immersion in a simple acidic PdCl2 solution (i.e. without using a prior surface sensitization in an acidic SnCl2 solution), and finally (iii) the electroless metallization itself. However, prior to the immersion in the industrial plating baths, the chemical reduction of the Pd+2 species (species covalently tethered on the nitrogen-containing groups) to metallic palladium (PdO) is shown to be a key factor in catalyzing the electroless deposition initiation. This is made by immersion in an hypophosphite (H2PO2-) solution. Wettability measurements and X-ray photoelectron spectroscopy (XPS) experiments are used to characterize every surface modification step of the developed process. A cross-hatch tape test was used to asses the adhesion strength of the electroless films that is shown qualitatively good. In addition, a fragmentation test was developed in combination with electrical measurements. Its use allows to distinguish different adhesion levels at the metal/polymer interface and to evidence the influence of some processing parameters.展开更多
基金supported by the National Natural Science Foundation of China(22275180)the National Key Research and Development Program of China(2019YFA0405600)the Collaborative Innovation Program of Hefei Science Center,CAS,and the University Synergy Innovation Program of Anhui Province(GXXT-2023-031).
文摘Cadmium sulfide(CdS)is an n-type semiconductor with excellent electrical conductivity that is widely used as an electron transport material(ETM)in solar cells.At present,numerous methods for preparing CdS thin films have emerged,among which magnetron sputtering(MS)is one of the most commonly used vacuum techniques.For this type of technique,the substrate temperature is one of the key deposition parameters that affects the interfacial properties between the target film and substrate,determining the specific growth habits of the films.Herein,the effect of substrate temperature on the microstructure and electrical properties of magnetron-sputtered CdS(MS-CdS)films was studied and applied for the first time in hydrothermally deposited antimony selenosulfide(Sb_(2)(S,Se)_(3))solar cells.Adjusting the substrate temperature not only results in the design of the flat and dense film with enhanced crystallinity but also leads to the formation of an energy level arrangement with a Sb_(2)(S,Se)_(3)layer that is more favorable for electron transfer.In addition,we developed an oxygen plasma treatment for CdS,reducing the parasitic absorption of the device and resulting in an increase in the short-circuit current density of the solar cell.This study demonstrates the feasibility of MS-CdS in the fabrication of hydrothermal Sb_(2)(S,Se)_(3)solar cells and provides interface optimization strategies to improve device performance.
文摘This study focuses on treating Guadua angustifolia bamboo fibers to enhance their properties for reinforcement applications in composite materials.Chemical(alkali)and physical(dry etching plasma)treatments were used separately to augment compatibility of Guadua angustifolia fibers with various composite matrices.The influence of these treatments on the fibers’performance,chemical composition,and surface morphology were analyzed.Statistical analysis indicated that alkali treatments reduced the tensile modulus of elasticity and strength of fibers by up to 40%and 20%,respectively,whereas plasma treatments maintain the fibers’mechanical performance.FTIR spectroscopy revealed significant alterations in chemical composition due to alkali treatments,while plasma-treated fibers showed minimal changes.Surface examination through Scanning Electron Microscopy(SEM)revealed post-treatment modifications in both cases;alkali treatments served as a cleanser,eliminating lignin and hemicellulose from the fiber surface,whereas plasma treatments also produce rough surfaces.These results validate the impact of the treatments on the fiber mechanical performance,which opens up possibilities for using Guadua angustifolia fibers as an alternative reinforcement in composite manufacturing.
基金supported by the National Natural Science Foundation of China under Grant Number 62163009 and 61864001the Natural Science Foundation of GuangXi under Grant Number 2021JJD170019+2 种基金the Foundation of Guangxi Key Laboratory of Automatic Detecting Technology and Instruments(Guilin University of Electronic Technology)under Grant Number YQ23103Innovation Project of GuangXi Graduate Education under Grant Nos.YCSW2022277 and 2023YCXS184Guangxi Major Scientific and Technological Innovation Base(Guilin University of Electronic Technology)under Grant 231002-k.
文摘As a promising cancer treatment method,cold atmospheric plasma has received widespread attention in recent years.However,previous research has focused more on how to realize and expand the anti-cancer scope of plasma jet.There are also studies on the killing of small-scale cancer cells,but the effects of plasma jet on normal cells and normal cell clusters have been ignored.Therefore,we proposed a 50μm sized micro-plasma jet device,and used the device to treat melanoma cells(A-375)and human glial cells(HA1800)to evaluate their anti-cancer effects and effects on normal cells.The experimental results show that this kind of micro-plasma jet device can effectively inactivate cancer cells in a short period of time,while having little effect on normal cells.This work provides a certain experimental basis for the application offine plasma jet to clinically inactivate cancer cells.
文摘Cold plasma technology was used to treat the surface of carbon fibers braided by PET in this paper and SEM was used to analyze the fracture microstructure of composite interlaminar shear stress (ILSS). The result shows that the surface polarity of carbon fibers was modified by cold plasma treatment, which increases the impregnation of PET braided carbon fibers during the process of resin flowing, improves the interfacial properties of RTM composites, and therefore enhances the mechanical properties of the KTM composites.
基金by Shenzhen Science and Technology Innovation Committee(No.JCYJ20180507182200750)。
文摘Commercial carbon cloth(CC)is an ideal electrocatalysis material to produce oxygen evolution reaction(OER)due to its high conductive and 3D flexible structure,but the lacked active sites limit its application.For improving its OER performance,the present study proposed an effective method combining plasma and acid treatment to introduce oxygen-containing functional groups and produce more active sites on its surface.Compared to the pristine CC,the plasma and acid treated carbon cloth(PN-CC)delivers a reduced overpotential by 34.6%to achieve current density of 10 mA cm^(−2).The Tafel slope declines from 97.5 mV dec^(–1)(pristine CC)to 55.9 mV dec–1(PN-CC),showing an increased OER kinetic.Additionally,PN-CC electrocatalyst shows outstanding stability after 5000 cycles or 25000 s.The combination of plasma and acid treatment shows a significant potential in surface modification for electrocatalysts.
文摘In this study, commercial biaxially oriented polypropylene (BOPP), polyvinyl chlo- ride (PVC) and poly (methyl methacrylate) (PMMA) films were treated with nitrogen plasma over different exposure times in a Pyrex tube surrounded by a DC variable magnetic field. The chemi- cal changes that appeared on the surface of the samples were investigated using Fourier transform infrared (FT4R) spectroscopy and attenuated total reflectance Fourier transform infrared (ATR- FTIR) spectroscopy after treatment for 2 min, 4 min and 6 rain in a nitrogen plasma chamber. Effects of the plasma treatment on the surface topographies and contact angles of the untreated and plasma treated films were also analyzed by atomic force microscopy (AFM) and a contact angle measuring system. The results show that the plasma treated films become more hydrophilic with an enhanced wettability due to the formation of some new polar groups on the surface of the treated films. Moreover, at higher exposure times, the total surface energy in all treated films increased while a reduction in contact angle occurred. The behavior of surface roughness in each sample was completely different at higher exposure times.
基金supported by Jiangsu Province Science and Technology Support Program of China(No.BE2013452)Main Direction Program of Knowledge Innovation of Chinese Academy of Sciences(No.KSCX-EW-B-6)
文摘This study investigated the effect of cold helium plasma treatment on seed germina- tion, growth and yield of wheat. The effects of different power of cold plasma on the germination of treated wheat seeds were studied. We found that the treatment of 80 W could significantly improve seed germination potential (6.0%) and germination rate (6.7%) compared to the control group. Field experiments were carried out for wheat seeds treated with 80 W cold plasma. Com- pared with the control, plant height (20.3%), root length (9.0%) and fresh weight (21.8%) were improved significantly at seedling stage. At booting stage, plant height, root length, fresh weight, stem diameter, leaf area and leaf thickness of the treated plant were respectively increased by 21.8%, 11.0%, 7.0%, 9.0%, 13.0% and 25.5%. At the same time, the chlorophyll content (9.8%), nitrogen (10.0%) and moisture content (10.0%) were higher than those of the control, indicating that cold plasma treatment could promote the growth of wheat. The yield of treated wheat was 7.55 t-ha-1, 5.89% more than that of the control. Therefore, our results show that cold plasma has important application prospects for increasing wheat yield.
基金the National Natural Science Foundation of China(No.205903603)the Ministry of Sciences and Technology of China(No.2005CB221406)the New Century Excellent Talent Project of Ministry of Education of China(No.CET-05-0783)
文摘Novel catalysts of phosphotungstic heteropolyacids (PW12) supported on neutral alumina were prepared by assistance of ultrasound and plasma treatment. The prepared catalysts were characterized by FT-IR pyridine adsorption (Py-IR), temperature programmed desorption of Pyridine (Py-TPD), BET and X-ray diffraction (XRD), and their catalytic performances were evaluated by the cationic polymerization of tetrahydrofuran. The results indicate that plasma treatment remarkably increases the surface acidity of the prepared catalyst while ultrasonic treatment induces PW12 to uniformly disperse on the support surface and expose more active sites for the acid catalytic reaction. A higher catalytic activity (69.7%) is obtained on the novel catalyst, which significantly outstripped that on the conventional sample (57.5%).
基金This work was supported by National Science Foundation Committee of China (Grant number 20106013).
文摘The 10%Ni/Al_2O_3 catalyst for partial oxidation of methane was treated byDBD (dielectric barrier discharge) plasma in a continuous system under atmospheric pressure and roomtemperature by flowing He. It was found that 10%Ni/Al_2O_3 catalyst treated by plasma presents ahigher catalytic activity and an enhanced stability than the catalysts prepared without plasmatreatment. The methane conversion over the catalyst treated by plasma is 3%-5% higher than thecatalysts untreated by plasma. Moreover, the enhanced dispersion of the catalyst can be achieved byplasma treatment, which can improve the interaction between active species and supports, catalyticactivity and the resistance to carbon deposition.
文摘Plasma treatment can be used to modify the structure of natural fibre like jute for a variety of applications. Environmentally friendly jute fibre was treated with argon and oxygen plasma. The treated samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and optical microscope. The macromolecular and microstructural changes in cellulose confirmed the change by plasma treatment. The XRD results confirmed that the crystal size and the crystallinity of the plasma treated fibre increased. Argon plasma treated fibre had a smooth and compact surface, compared to oxygen plasma treated fibre. The maximum stain (i.e. stress) concentrated in the oxygen plasma treated fibre. Optical micrographs showed the oxygen plasma treated fibre tended to rupture due to higher strain (i.e., stress) compared to fibre with argon plasma treatment. FTIR results also provided the evidence of change in the chemical constituents with plasma treatment.
基金Project supported by the National Natural Science Foundation of China(Grant No.60736033)the Fundamental Research Funds for the Central Universities(Grant No.JY10000904009)
文摘This paper reports fluorine plasma treatment enhancement-mode HEMTs (high electronic mobility transistors) EHEMTs and conventional depletion-mode HEMTs DHEMTs fabricated on one wafer using separate litho-photography technology. It finds that fluorine plasma etches the AlGaN at a slow rate by capacitance-voltage measurement. Using capacitance-frequency measurement, it finds one type of trap in conventional DHEMTs with TT = (0.5 - 6) ms and DT : (1 - 5)×10^13 cm^-2. eV^-1. Two types of trap are found in fluorine plasma treatment EHEMTs, fast with TW(f)= (0.2 - 2) μs and slow with TT(s) = (0.5 - 6) ms. The density of trap states evaluated on the EHEMTs is Dw(f) : (1 - 3) × 10^12 cm^-2. eV^-1 and DT(s) =(2 - 6) × 10^12 cm-2. eV-1 for the fast and slow traps, respectively. The result shows that the fluorine plasma treatment reduces the slow trap density by about one order, but introduces a new type of fast trap. The slow trap is suggested to be a surface trap, related to the gate leakage current.
基金Iran National Science Foundation(INSF) for providing grant of members
文摘Microbial contamination induces surface deformations and strength degradation of cotton fabrics by invading deeply into the fibers. In this study, the sterilization effects of low pressure plasmas on bacteria-inoculated cotton fabrics were investigated. Oxygen plasma treatment completely sterilized the cotton fabrics inoculated with various concentrations of staphylococcus aureus. Also, the influence of plasma treatment on physical properties of fabrics was examined. It was found that the plasma treatment did not affect ultimate tensile strength and surface morphology of the fabrics because it took advantage of relatively low plasma temperature.
基金supported by the Czech Science Foundation(Project No.104/08/02290)
文摘This paper presents the results of aluminum surface treatment by diffuse coplanar surface barrier discharge. The goals are to study the effectiveness of the plasma treatment and the dependence of its efficiency on operation parameters, such as sample-to-electrode distance, treatment time or gas atmosphere. Three types of aluminum materials (bricks, sheets and thin films) were tested to ensure the reliability of the treatment. The changes in the surface properties were characterized by the surface free energy, atomic force microscopy, attenuated total reflectance Fourier transform infrared spectroscopy (ATR FTIR) and X-ray photoelectron spec- troscopy (XPS). The influence of aging effect on the treatment was also measured and discussed.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology(2011-0013211).
文摘To reduce time and energy during thermal binder removal in the ceramic process, plasma surface treatment was applied before the lamination process.The adhesion strength in the lamination films was enhanced by oxidative plasma treatment of the porous green ceramic film with polymeric binding materials.The oxygen plasma characteristics were investigated through experimental parameters and weight loss analysis.The experimental results revealed the need for parameter analysis,including gas material,process time,flow rate,and discharge power,and supported a mechanism consisting of competing ablation and deposition processes.The weight loss analysis was conducted for cyclic plasma treatment rather than continuous plasma treatment for the purpose of improving the film’s permeability by suppressing deposition of the ablated species.The cyclic plasma treatment improved the permeability compared to the continuous plasma treatment.
基金FWO-Vlaanderen(No.GO87418N and 1S68518N)BOF-GOA UGent(No.01G01019)Solvay SA for financial support。
文摘Lithium(Li)metal is an attractive anode material with high capacity(3860 mAh g^(−1))and low potential(−3.04 V vs.standard hydrogen electrode)that shows highly promising for applications requiring high energy density.However,the low electrochemical potential of Li metal makes it extremely reactive and inevitably forming a native oxidized layer in the ambient environment and repeatedly being consumed when exposed to liquid electrolytes.It is therefore beneficial to replace the poorly controlled native passivation layer with a tailored artificial SEI to improve interface management between Li and electrolyte and enhance the stability of Li metal battery.Here,we use an integrated glovebox-atomic layer deposition(ALD)-X-ray photoelectron spectroscopy(XPS)setup to in-situ investigating the pristine Li surface and the surface composition after Ar,H_(2)O_(2),N_(2)and NH_(3)plasma treatment processes.We find that the pristine Li foil is naturally being covered with a native oxidized layer,which is mainly composed of LiOH,Li_(2)O and Li_(2)CO_(3).These investigated plasmas can efficiently remove the oxidized layer from the Li metal surface,in which metallic Li surface is obtained after Ar or H2 plasma treatments,where Ar plasma is more efficient.While O_(2)plasma treatment produces a Li_(2)O layer,and N_(2)or NH_(3)plasma treatment leads to a Li3N(including a certain amount of LiON)layer on the Li surface.When employing the representative metallic Li(by Ar plasma treatment),Li_(2)O layer coated Li(by O_(2)plasma treatment)and Li3N layer coated Li(by N_(2)plasma treatment)foils as electrodes in symmetric Li metal batteries,the Li3N coated Li electrode exhibits much higher stability than that of metallic and Li_(2)O layer coated Li foils.Improved electrochemical performance has also been achieved in LiMn_(2)O_(4)(LMO)||Li full cells using Li anode with Li3N protective coating layer.Our work reveals the detailed process of surface engineering of Li metal anodes with plasma treatments by in vacuo XPS,which may also be extended to other gas-treatment or plasma-treatment for stabilization of high energy density Li metal anodes and other metal-based anodes.
基金The project supported by the Dean Foundation of Research Institute of Chemical Defence
文摘An experiment and analysis on removal of gaseous benzene by pulse corona induced-plasma is presented in this article. Important parameters effecting removal efficiency have been investigated, such as pulse peak voltage, pulse frequency, gas inlet concentration, gas flow rate and reactor temperature. The result shows that the removal efficiency increases with the increase in pulse peak voltage, pulse frequency and reactor temperature, but decreases in the rise of gas inlet concentration and gas flow rate. On the condition of Vp= 36 kV, f= 80 Hz, C=1440 mg/m3 and Q=640 ml/min, the largest removal efficiency is 98%. Finally, the reacted products are qualitatively analysed and the reaction processes are deduced in combination with plasma-chemistry theory.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61176100 and 61274112)
文摘High-k gate dielectric Hf Ti ON Ga As metal-oxide–semiconductor(MOS) capacitors with La ON as interfacial passivation layer(IPL) and NH3- or N2-plasma surface pretreatment are fabricated, and their interfacial and electrical properties are investigated and compared with their counterparts that have neither La ON IPL nor surface treatment. It is found that good interface quality and excellent electrical properties can be achieved for a NH3-plasma pretreated Ga As MOS device with a stacked gate dielectric of Hf Ti ON/La ON. These improvements should be ascribed to the fact that the NH3-plasma can provide H atoms and NH radicals that can effectively remove defective Ga/As oxides. In addition, La ON IPL can further block oxygen atoms from being in-diffused, and Ga and As atoms from being out-diffused from the substrate to the high-k dielectric. This greatly suppresses the formation of Ga/As native oxides and gives rise to an excellent high-k/Ga As interface.
文摘An environmental and economic assessment of the development of a plasma-chemical reactor equipped with plasma torches for the environmentally friendly treatment of waste streams by plasma is outlined with a view to the chemical and energetic valorization of the sustainability in the Kingdom of Saudi Arabia(KSA). This is especially applicable in the pilgrimage season in the city of Makkah, which is a major challenge since the amount of waste was estimated at about 750 thousand tons through Arabic Year 1435 H(2015), and is growing at a rate of 3%–5% annually. According to statistics, the value of waste in Saudi Arabia ranges between 8 and 9 billion EUR. The Plasma-Treatment Project(PTP) encompasses the direct plasma treatment of all types of waste(from source and landfill), as well as an environmental vision and economic evaluation of the use of the gas produced for fuel and electricity production in KSA, especially in the pilgrimage season in the holy city Makkah. The electrical power required for the plasmatreatment process is estimated at 5000 kW(2000 kW used for the operation of the system and 3000 kW sold), taking into account the fact that:(1) the processing capacity of solid waste is 100 tons per day(2) and the sale of electricity amounts to 23.8 MW at 0.18 EUR per kWh.(3) The profit from the sale of electricity per year is estimated at 3.27 million EUR and the estimated profit of solid-waste treatment amounts to 6 million EUR per year and(4) the gross profit per ton of solid waste totals 8 million EUR per year. The present article introduces the first stage of the PTP, in Makkah in the pilgrimage season, which consists of five stages:(1) study and treatment of waste streams,(2) slaughterhouse waste treatment,(3) treatment of refuse-derived fuel,(4)treatment of car tires and(5) treatment of slag(the fifth stage associated with each stage from the four previous stages).
基金National Natural Science Foundation of China(Nos.20576079,20776159)
文摘Catalysis and regeneration efficiency of granular activated carbon (GAC) and activated carbon fiber (ACF) were investigated in a non-equilibrium plasma water treatment reactor with a combination of pulsed streamer discharge and GAC or ACF. The experimental results show that the degradation efficiency of methyl orange (MO) by the combined treatment can increase 22% (for GAC) and 24% (for ACF) respectively compared to pulsed discharge treatment alone, indicating that the combined treatment has a synergetic effect. The MO degradation efficiency by the combined treatment with pulsed discharge and saturated GAC or ACF can increase 12% and 17% respectively compared to pulsed discharge treatment alone. Both GAC and ACF show catalysis and the catalysis of ACF is prominent. Meanwhile, the regeneration of GAC and ACF are realized in this process. When H202 is introduced into the system, the utilization efficiency of ozone and ultraviolet light is improved and the regeneration efficiency of GAC and ACF is also increased.
文摘This paper describes the electroless Ni or Cu plating of some fiuoropolymer substrates through a tin-free activation process. Materials subjected to surface metallization are commercial Teflon() FEP, Nafion(), ACLAR() and LaRCTM-CP1 thin films which have recently gained a large scientific and technological interest due to their excellent thermal, chemical, mechanical and dielectric properties. The original approach implemented in the present work involves: (i)the grafting of nitrogen-containing functionalities on the polymer surfaces through plasma treatments in ammonia, (ii) the direct catalysis of the so-modified surfaces via their immersion in a simple acidic PdCl2 solution (i.e. without using a prior surface sensitization in an acidic SnCl2 solution), and finally (iii) the electroless metallization itself. However, prior to the immersion in the industrial plating baths, the chemical reduction of the Pd+2 species (species covalently tethered on the nitrogen-containing groups) to metallic palladium (PdO) is shown to be a key factor in catalyzing the electroless deposition initiation. This is made by immersion in an hypophosphite (H2PO2-) solution. Wettability measurements and X-ray photoelectron spectroscopy (XPS) experiments are used to characterize every surface modification step of the developed process. A cross-hatch tape test was used to asses the adhesion strength of the electroless films that is shown qualitatively good. In addition, a fragmentation test was developed in combination with electrical measurements. Its use allows to distinguish different adhesion levels at the metal/polymer interface and to evidence the influence of some processing parameters.