The microwave absorption efficiency, which is relevant to magnet field and its distribution, is a major parameter of the microwave ion source (MWIS) for the intense neutron tube. Based on previous work, the relations ...The microwave absorption efficiency, which is relevant to magnet field and its distribution, is a major parameter of the microwave ion source (MWIS) for the intense neutron tube. Based on previous work, the relations between microwave absorption efficiency and plasma chamber structure and thickness of the microwave introduction window are studied. The microwave absorption efficiency reaches to 100% when plasma chamber is 100mm long and the window thickness is 30mm. The microwave absorption efficiency as a function of pressure is also presented.展开更多
A two-dimensional mathematical model was developed to investigate the effects of dielectric barrier discharge (DBD) plasma on CH4-air mixtures combustion at atmospheric pressure. Considering the physical and chemica...A two-dimensional mathematical model was developed to investigate the effects of dielectric barrier discharge (DBD) plasma on CH4-air mixtures combustion at atmospheric pressure. Considering the physical and chemical processes of plasma-assisted combustion (PAC), plasma discharge, heat transfer and turbulent were simultaneously coupled into simulation of PAC. This coupling model consists of DBD kinetic model and methane combustion model. By comparing simulations and the original reference's results, a high-accuracy of this model was validated. In addition, the effects of PAC actuation parameters on combustion characteristics were studied. Numerical simulations show that with an inlet airflow velocity of 10 m s-1, a CH4-air mixtures' equivalence ratio of 0.5, an applied voltage of 10 kV, a frequency of 1200 kHz, compared to conventional combustion (CC), the highest flame temperature rises by 32 K; outlet temperature distribution coefficient drops by 2.3%; the maximum net reaction rate of CH4 and H20 increase by 11.22% and 12.80% respectively; the maximum CO emission index decreases by 14.61%; the mixing region turbulence mixing time reduces by 89 ms.展开更多
The paper describes the operation features of plasma focus chambers using deuteriumetritium mixture.Handling tritium requires the use of sealed,vacuum-tight plasma focus chambers.In these chambers,there is an accumula...The paper describes the operation features of plasma focus chambers using deuteriumetritium mixture.Handling tritium requires the use of sealed,vacuum-tight plasma focus chambers.In these chambers,there is an accumulation of the impurity gases released from the inside surfaces of the electrodes and the insulator while moving plasma current sheath inside chambers interacting with b-electrons generated due to the decay of tritium.Decay of tritium is also accompanied by the accumulation of helium.Impurities lead to a decreased yield of neutron emission from plasma focus chambers,especially for long term operation.The paper presents an option of absorption type gas generator in the chamber based on porous titanium,which allows to significantly increase the lifetime and shelf life of tritium chambers.It also shows the results of experiments on the comparison of the operation of sealed plasma focus chambers with and without the gas generator.展开更多
The interaction mechanism between the plasma and liquid is a key problem for the electrothermal chemical launch technology. To investigate this problem, a simulated experiment for the expansion process of a plasma jet...The interaction mechanism between the plasma and liquid is a key problem for the electrothermal chemical launch technology. To investigate this problem, a simulated experiment for the expansion process of a plasma jet in the working fluid is carried on. Based on this experiment, a two-dimensional axisymmetric unsteady theoretical model is established to reveal the plasma-liquid interaction flow field pattern. The results show that a typical Taylor cavity forms as the plasma jet expands in liquid. The induction effect of the stepped-wall structure enhances the radial expansion of the plasma jet. An arc-shaped pressure wave is generated at the front of the plasma jet and then evolves into the plane wave. A high-pressure area forms at the head of the plasma jet and then moves downstream. There is a strong plasma-liquid turbulent mixing at the interface, especially near the steps and the nozzle exit area.展开更多
A single cathode with a cascaded bias voltage arc plasma source has been developed with a new quartz cathode chamber,instead of the previous copper chambers,to provide better diagnostic observation and access to the p...A single cathode with a cascaded bias voltage arc plasma source has been developed with a new quartz cathode chamber,instead of the previous copper chambers,to provide better diagnostic observation and access to the plasma optical emission.The cathode chamber cooling scheme is also modified to be naturally cooled only by light emission without cooling water to improve the optical thin performance in the optical path.A single-parameter physical model has been developed to describe the power dissipated in the cascaded bias voltage arc discharge argon plasmas,which have been investigated by utilizing optical emission spectroscopy(OES) and Langmuir probe.In the experiments,discharge currents from 50 A to 100 A,argon flow rates from 800 sccm to 2000 sccm and magnetic fields of 0.1 T and 0.2 T were chosen.The results show:(a) the relationship between the averaged resistivity and the averaged current density exhibits an empirical scaling law as η∝ j^(-0.63369) and the power dissipated in the arc has a strong relation with the filling factor;(b) through the quartz,the argon ions optical emission lines have been easily observed and are dominating with wavelengths between 340 nm and 520 nm,which are the emissions of Ar^+-434.81 nm and Ar^+-442.60 nm line,and theintensities are increasing with the arc current and decreasing with the inlet argon flow rate;and(c) the electron density and temperature can reach 2.0 × 10^19 m^-3 and 0.48 eV,respectively,under the conditions of an arc current of 90 A and a magnetic field of 0.2 T.The half-width of the ne radial profile is approximatively equal to a few Larmor radii of electrons and can be regarded as the diameter of the plasma jet in the experiments.展开更多
Numerical simulations of 10 kW and 110 kW inductively coupled plasma (ICP) wind tunnels were carried out to study physical properties of the flow inside the ICP torch and vacuum chamber with air as tile working gas....Numerical simulations of 10 kW and 110 kW inductively coupled plasma (ICP) wind tunnels were carried out to study physical properties of the flow inside the ICP torch and vacuum chamber with air as tile working gas. Two-dimensional compressible axisymmetric Navier- Stokes (N-S) equations that took into account 11 species and 49 chemical reactions of air, were solved. A heat source model was used to describe the heating phenomenon instead of solving the electromagnetic equations. In the vacuum chamber, a four-temperature model was coupled with N-S equations. Numerical results for tile 10 kW ICP wind tunnel are presented and discussed in detail as a representative case. It was found that the plasma flow in the vacuum chamber tended to be in local thermoehemical equilibrium. To study the influence of operation conditions on the flow field, simulations were carried out for different chamber pressures and/or input powers. The computational results for the above two ICP wind tunnels were compared with corresponding experimental data. The computational and experimental results agree well, therefore the flow fields of ICP wind tunnels can be clearly understood.展开更多
基金Innovation Fund for Technology-based Small Firms (99C26212210085)
文摘The microwave absorption efficiency, which is relevant to magnet field and its distribution, is a major parameter of the microwave ion source (MWIS) for the intense neutron tube. Based on previous work, the relations between microwave absorption efficiency and plasma chamber structure and thickness of the microwave introduction window are studied. The microwave absorption efficiency reaches to 100% when plasma chamber is 100mm long and the window thickness is 30mm. The microwave absorption efficiency as a function of pressure is also presented.
基金supported by National Natural Science Foundation of China(No.51436008)
文摘A two-dimensional mathematical model was developed to investigate the effects of dielectric barrier discharge (DBD) plasma on CH4-air mixtures combustion at atmospheric pressure. Considering the physical and chemical processes of plasma-assisted combustion (PAC), plasma discharge, heat transfer and turbulent were simultaneously coupled into simulation of PAC. This coupling model consists of DBD kinetic model and methane combustion model. By comparing simulations and the original reference's results, a high-accuracy of this model was validated. In addition, the effects of PAC actuation parameters on combustion characteristics were studied. Numerical simulations show that with an inlet airflow velocity of 10 m s-1, a CH4-air mixtures' equivalence ratio of 0.5, an applied voltage of 10 kV, a frequency of 1200 kHz, compared to conventional combustion (CC), the highest flame temperature rises by 32 K; outlet temperature distribution coefficient drops by 2.3%; the maximum net reaction rate of CH4 and H20 increase by 11.22% and 12.80% respectively; the maximum CO emission index decreases by 14.61%; the mixing region turbulence mixing time reduces by 89 ms.
文摘The paper describes the operation features of plasma focus chambers using deuteriumetritium mixture.Handling tritium requires the use of sealed,vacuum-tight plasma focus chambers.In these chambers,there is an accumulation of the impurity gases released from the inside surfaces of the electrodes and the insulator while moving plasma current sheath inside chambers interacting with b-electrons generated due to the decay of tritium.Decay of tritium is also accompanied by the accumulation of helium.Impurities lead to a decreased yield of neutron emission from plasma focus chambers,especially for long term operation.The paper presents an option of absorption type gas generator in the chamber based on porous titanium,which allows to significantly increase the lifetime and shelf life of tritium chambers.It also shows the results of experiments on the comparison of the operation of sealed plasma focus chambers with and without the gas generator.
文摘The interaction mechanism between the plasma and liquid is a key problem for the electrothermal chemical launch technology. To investigate this problem, a simulated experiment for the expansion process of a plasma jet in the working fluid is carried on. Based on this experiment, a two-dimensional axisymmetric unsteady theoretical model is established to reveal the plasma-liquid interaction flow field pattern. The results show that a typical Taylor cavity forms as the plasma jet expands in liquid. The induction effect of the stepped-wall structure enhances the radial expansion of the plasma jet. An arc-shaped pressure wave is generated at the front of the plasma jet and then evolves into the plane wave. A high-pressure area forms at the head of the plasma jet and then moves downstream. There is a strong plasma-liquid turbulent mixing at the interface, especially near the steps and the nozzle exit area.
基金supported by the International Thermonuclear Experimental Reactor(ITER)Program Special of Ministry of Science and Technology(No.2013GB114003)National Natural Science Foundation of China(Nos.11275135,11475122)
文摘A single cathode with a cascaded bias voltage arc plasma source has been developed with a new quartz cathode chamber,instead of the previous copper chambers,to provide better diagnostic observation and access to the plasma optical emission.The cathode chamber cooling scheme is also modified to be naturally cooled only by light emission without cooling water to improve the optical thin performance in the optical path.A single-parameter physical model has been developed to describe the power dissipated in the cascaded bias voltage arc discharge argon plasmas,which have been investigated by utilizing optical emission spectroscopy(OES) and Langmuir probe.In the experiments,discharge currents from 50 A to 100 A,argon flow rates from 800 sccm to 2000 sccm and magnetic fields of 0.1 T and 0.2 T were chosen.The results show:(a) the relationship between the averaged resistivity and the averaged current density exhibits an empirical scaling law as η∝ j^(-0.63369) and the power dissipated in the arc has a strong relation with the filling factor;(b) through the quartz,the argon ions optical emission lines have been easily observed and are dominating with wavelengths between 340 nm and 520 nm,which are the emissions of Ar^+-434.81 nm and Ar^+-442.60 nm line,and theintensities are increasing with the arc current and decreasing with the inlet argon flow rate;and(c) the electron density and temperature can reach 2.0 × 10^19 m^-3 and 0.48 eV,respectively,under the conditions of an arc current of 90 A and a magnetic field of 0.2 T.The half-width of the ne radial profile is approximatively equal to a few Larmor radii of electrons and can be regarded as the diameter of the plasma jet in the experiments.
基金supported by Grant-in-Aid for Scientific Research(No.23560954)sponsored by the Japan Society for the Promotion of Science
文摘Numerical simulations of 10 kW and 110 kW inductively coupled plasma (ICP) wind tunnels were carried out to study physical properties of the flow inside the ICP torch and vacuum chamber with air as tile working gas. Two-dimensional compressible axisymmetric Navier- Stokes (N-S) equations that took into account 11 species and 49 chemical reactions of air, were solved. A heat source model was used to describe the heating phenomenon instead of solving the electromagnetic equations. In the vacuum chamber, a four-temperature model was coupled with N-S equations. Numerical results for tile 10 kW ICP wind tunnel are presented and discussed in detail as a representative case. It was found that the plasma flow in the vacuum chamber tended to be in local thermoehemical equilibrium. To study the influence of operation conditions on the flow field, simulations were carried out for different chamber pressures and/or input powers. The computational results for the above two ICP wind tunnels were compared with corresponding experimental data. The computational and experimental results agree well, therefore the flow fields of ICP wind tunnels can be clearly understood.