In this experimental prospective study, we aimed to analyze the effect of transient scrotal hyperthermia on the male reproductive organs, from the perspective of sperm parameters, semen plasma biochemical markers, and...In this experimental prospective study, we aimed to analyze the effect of transient scrotal hyperthermia on the male reproductive organs, from the perspective of sperm parameters, semen plasma biochemical markers, and oxidative stress, to evaluate whether different frequencies of heat exposure cause different degrees of damage to spermatogenesis. Two groups of volunteers (10 per group) received testicular warming in a 43~C water bath 10 times, for 30 min each time: group 1:10 consecutive days; group 2: once every 3 days. Sperm parameters, epididymis and accessory sex gland function, semen plasma oxidative stress and serum sex hormones were tested before treatment and in the 16-week recovery period after treatment. At last, we found an obvious reversible decrease in sperm concentration (P = 0.005 for Group 1 and P = 0.008 for Group 2 when the minimums were compared with baseline levels, the same below), motility (P= 0.009 and 0.021, respectively), the hypoosmotic swelling test score (P-- 0.007 and 0.008, respectively), total acrosin activity (P = 0.018 and 0.009, respectively), and an increase in the seminal plasma malondialdehyde concentration (P = 0.005 and 0.017, respectively). The decrease of sperm concentration was greater for Group 2 than for Group 1 (P = 0.031). We concluded that transient scrotal hyperthermia seriously, but reversibly, negatively affected the spermatogenesis, oxidative stress may be involved in this process. In addition, intermittent heat exposure more seriously suppresses the spermatogenesis compared to consecutive heat exposure. This may be indicative for clinical infertility etiology analysis and the design of contraceptive methods based on heat stress.展开更多
Background Recent studies suggest that circulating DNA may be a potential tumor marker for lung cancer, but most of these studies are conducted between healthy controls and lung cancer patients, with few or no benign...Background Recent studies suggest that circulating DNA may be a potential tumor marker for lung cancer, but most of these studies are conducted between healthy controls and lung cancer patients, with few or no benign lung disease patients included. The objective of this study was to evaluate the performance of plasma DNA quantification in discriminating lung cancer from the healthy and benign lung disease.Methods Plasma DNA was extracted with a QIAamp DNA Blood Midi kit and quantified by a PicoGreen dsDNA quantitation kit in 44 healthy individuals, 36 benign lung disease patients and 67 lung cancer patients. Discrimination power was evaluated by the receiver operating characteristic curve. Results Plasma DNA values were significantly increased in lung cancer patients, especially in those with metastases, and in benign lung disease patients compared with that in the healthy individuals (P<0.001, respectively). The values in lung cancer patients were significantly increased compared with that in the benign lung disease patients (P<0.001). The area under the curve was 0.96 [95% confidence interval (CI) 0.92-0.99] for the healthy versus lung cancer, 0.73 (95% CI 0.64-0.83) for lung cancer versus benign lung disease, and 0.86 (95% CI 0.80-0.91) for lung cancer versus the healthy and benign lung disease.Conclusions Plasma DNA quantification has a strong power to discriminate lung cancer from the healthy and from the healthy and benign lung disease, less power to discriminate lung cancer from benign lung disease. Plasma DNA quantification may be useful as a screening tool for lung cancer.展开更多
基金ACKNOWLEDGMENTS This study was supported by the National Science and Technology Support Program of the Ministry of Science and Technology (No. 2012BAI31B08), the National Natural Science Foundation of China (No. 31171380).
文摘In this experimental prospective study, we aimed to analyze the effect of transient scrotal hyperthermia on the male reproductive organs, from the perspective of sperm parameters, semen plasma biochemical markers, and oxidative stress, to evaluate whether different frequencies of heat exposure cause different degrees of damage to spermatogenesis. Two groups of volunteers (10 per group) received testicular warming in a 43~C water bath 10 times, for 30 min each time: group 1:10 consecutive days; group 2: once every 3 days. Sperm parameters, epididymis and accessory sex gland function, semen plasma oxidative stress and serum sex hormones were tested before treatment and in the 16-week recovery period after treatment. At last, we found an obvious reversible decrease in sperm concentration (P = 0.005 for Group 1 and P = 0.008 for Group 2 when the minimums were compared with baseline levels, the same below), motility (P= 0.009 and 0.021, respectively), the hypoosmotic swelling test score (P-- 0.007 and 0.008, respectively), total acrosin activity (P = 0.018 and 0.009, respectively), and an increase in the seminal plasma malondialdehyde concentration (P = 0.005 and 0.017, respectively). The decrease of sperm concentration was greater for Group 2 than for Group 1 (P = 0.031). We concluded that transient scrotal hyperthermia seriously, but reversibly, negatively affected the spermatogenesis, oxidative stress may be involved in this process. In addition, intermittent heat exposure more seriously suppresses the spermatogenesis compared to consecutive heat exposure. This may be indicative for clinical infertility etiology analysis and the design of contraceptive methods based on heat stress.
文摘Background Recent studies suggest that circulating DNA may be a potential tumor marker for lung cancer, but most of these studies are conducted between healthy controls and lung cancer patients, with few or no benign lung disease patients included. The objective of this study was to evaluate the performance of plasma DNA quantification in discriminating lung cancer from the healthy and benign lung disease.Methods Plasma DNA was extracted with a QIAamp DNA Blood Midi kit and quantified by a PicoGreen dsDNA quantitation kit in 44 healthy individuals, 36 benign lung disease patients and 67 lung cancer patients. Discrimination power was evaluated by the receiver operating characteristic curve. Results Plasma DNA values were significantly increased in lung cancer patients, especially in those with metastases, and in benign lung disease patients compared with that in the healthy individuals (P<0.001, respectively). The values in lung cancer patients were significantly increased compared with that in the benign lung disease patients (P<0.001). The area under the curve was 0.96 [95% confidence interval (CI) 0.92-0.99] for the healthy versus lung cancer, 0.73 (95% CI 0.64-0.83) for lung cancer versus benign lung disease, and 0.86 (95% CI 0.80-0.91) for lung cancer versus the healthy and benign lung disease.Conclusions Plasma DNA quantification has a strong power to discriminate lung cancer from the healthy and from the healthy and benign lung disease, less power to discriminate lung cancer from benign lung disease. Plasma DNA quantification may be useful as a screening tool for lung cancer.