Plasma membrane of plant cells is surrounded by cellulose wall and adjacent cells are joined together by a thick pectin rich matrix. Separation of plant cells and removal of the cell wall experimentally, by either a m...Plasma membrane of plant cells is surrounded by cellulose wall and adjacent cells are joined together by a thick pectin rich matrix. Separation of plant cells and removal of the cell wall experimentally, by either a mechanical or an enzymatic process, results in the production ofprotoplast. Protoplasts are useful tools to study the uptake and transport ofmacromolecules and production of somatic hybrids. Protoplasts can be obtained from all types of actively growing young and healthy tissues. The most convenient and widely used source of plant protoplasts is leaf. Juvenile seedling tissues, cotyledons are other alternative tissues most frequently used for protoplasts isolation. All the environmental and genotypic factors, which affect the cell wall thickenings and compactness indirectly, influence the number of protoplasts recovered. Protoplasts are isolated by two methods, mechanical and enzymatic. The enzyme mixture solution of celluiose/macerozyme is used to digest the cell wall. The critical factors affecting the obtaning ofprotoplasts are the kinds of cell wall degrading enzymes, the physiological state of plant leaves, the type of osmotic stabilizers and the composition of reaction solution. With the improvement of technique and enzyme combination rate, the yield of collected protoplasts will be increased higher.展开更多
The cell wall provides external support of the plant cells, while the cytoskeletons including the microtubules and the actin filaments constitute an internal framework. The cytoskeletons contribute to the cell wall bi...The cell wall provides external support of the plant cells, while the cytoskeletons including the microtubules and the actin filaments constitute an internal framework. The cytoskeletons contribute to the cell wall biosynthesis by spatially and temporarily regulating the transportation and deposition of cell wall components. This tight control is achieved by the dynamic behavior of the cytoskeletons, but also through the tethering of these structures to the plasma membrane. This tethering may also extend beyond the plasma membrane and impact on the cell wall, possibly in the form of a feedback loop. In this review, we discuss the linking components between the cytoskeletons and the plasma membrane, and/or the cell wall. We also discuss the prospective roles of these components in cell wall biosyn- thesis and modifications, and aim to provide a platform for further studies in this field.展开更多
Chemical genetics as a part of chemical genomics is a powerful and fast developing approach to dissect biological processes that may be difficult to characterize using conventional genetics because of gene redundancy ...Chemical genetics as a part of chemical genomics is a powerful and fast developing approach to dissect biological processes that may be difficult to characterize using conventional genetics because of gene redundancy or lethality and, in the case of polysaccharide biosynthesis, plant flexibility. Polysaccharide synthetic enzymes are located in two main compartments--the Golgi apparatus and plasma membrane-and can be studied in vitro using membrane fractions. Here, we first developed a high-throughput assay that allowed the screening of a library of chemicals with a potential effect on glycosyltransferase activities. Out of the 4800 chemicals screened for their effect on Golgi glucosyltransferases, 66 compounds from the primary screen had an effect on carbohydrate biosynthesis. Ten of these compounds were confirmed to inhibit glucose incorporation after a second screen. One compound exhibiting a strong inhibition effect (ID 6240780 named chemical A) was selected and further studied. It reversibly inhibits the transfer of glucose from UDP-glucose by Golgi membranes, but activates the plasma membrane-bound callose synthase. The inhibition effect is dependent on the chemical structure of the compound, which does not affect endomembrane morphology of the plant cells, but causes changes in cell wall composition. Chemical A represents a novel drug with a great potential for the study of the mechanisms of Golgi and plasma membrane-bound glucosyltransferases.展开更多
We studied the perception of plant cells to osmotic stress that leads to the accumulation of abscisic acid (ABA) in stressed Arabidopsis thaliana L. cells. A significant difference was found between protoplasts and ...We studied the perception of plant cells to osmotic stress that leads to the accumulation of abscisic acid (ABA) in stressed Arabidopsis thaliana L. cells. A significant difference was found between protoplasts and cells in terms of their responses to osmotic stress and ABA biosynthesis, implying that cell wall and/or cell wall-plasma membrane interaction are essential in identifying osmotic stress. Western blotting and immunofluorescence localization experiments, using polyclonal antibody against human integrin β1, revealed the existence of a protein similar to the integrin protein of animals in the suspension-cultured cells located in the plasma membrane fraction. Treatment with a synthetic pentapeptide, Gly-Arg-Gly-Asp-Ser (GRGDS), which contains an RGD domain and interacts specifically with integrin protein and thus blocks the cell wall-plasma membrane interaction, significantly inhibited osmotic stress-induced ABA biosynthesis in cells, but not in protoplasts. These results demonstrate that cell wall and/or cell wall-plasma membrane interaction mediated by integrin-Iike proteins played important roles in osmotic stress-induced ABA biosynthesis in Arabidopsis thaliana.展开更多
文摘Plasma membrane of plant cells is surrounded by cellulose wall and adjacent cells are joined together by a thick pectin rich matrix. Separation of plant cells and removal of the cell wall experimentally, by either a mechanical or an enzymatic process, results in the production ofprotoplast. Protoplasts are useful tools to study the uptake and transport ofmacromolecules and production of somatic hybrids. Protoplasts can be obtained from all types of actively growing young and healthy tissues. The most convenient and widely used source of plant protoplasts is leaf. Juvenile seedling tissues, cotyledons are other alternative tissues most frequently used for protoplasts isolation. All the environmental and genotypic factors, which affect the cell wall thickenings and compactness indirectly, influence the number of protoplasts recovered. Protoplasts are isolated by two methods, mechanical and enzymatic. The enzyme mixture solution of celluiose/macerozyme is used to digest the cell wall. The critical factors affecting the obtaning ofprotoplasts are the kinds of cell wall degrading enzymes, the physiological state of plant leaves, the type of osmotic stabilizers and the composition of reaction solution. With the improvement of technique and enzyme combination rate, the yield of collected protoplasts will be increased higher.
基金financially supported by the Max-Planck Gesellschaft,and Zengyu Liu by the Chinese Scholarship Council
文摘The cell wall provides external support of the plant cells, while the cytoskeletons including the microtubules and the actin filaments constitute an internal framework. The cytoskeletons contribute to the cell wall biosynthesis by spatially and temporarily regulating the transportation and deposition of cell wall components. This tight control is achieved by the dynamic behavior of the cytoskeletons, but also through the tethering of these structures to the plasma membrane. This tethering may also extend beyond the plasma membrane and impact on the cell wall, possibly in the form of a feedback loop. In this review, we discuss the linking components between the cytoskeletons and the plasma membrane, and/or the cell wall. We also discuss the prospective roles of these components in cell wall biosyn- thesis and modifications, and aim to provide a platform for further studies in this field.
基金This work supported by grants DBI-0211797 (to N.V.R.) and MCB- 0515963 (to N.V.R.)from the National Science Foundation Plant Genome Research Program.We thank Dr Somerville (Carnegie Institution, Stanford, CA) and Dr Dupree (University of Cambridge, UK) for the seeds of transgenic plants. No conflict of interest declared.
文摘Chemical genetics as a part of chemical genomics is a powerful and fast developing approach to dissect biological processes that may be difficult to characterize using conventional genetics because of gene redundancy or lethality and, in the case of polysaccharide biosynthesis, plant flexibility. Polysaccharide synthetic enzymes are located in two main compartments--the Golgi apparatus and plasma membrane-and can be studied in vitro using membrane fractions. Here, we first developed a high-throughput assay that allowed the screening of a library of chemicals with a potential effect on glycosyltransferase activities. Out of the 4800 chemicals screened for their effect on Golgi glucosyltransferases, 66 compounds from the primary screen had an effect on carbohydrate biosynthesis. Ten of these compounds were confirmed to inhibit glucose incorporation after a second screen. One compound exhibiting a strong inhibition effect (ID 6240780 named chemical A) was selected and further studied. It reversibly inhibits the transfer of glucose from UDP-glucose by Golgi membranes, but activates the plasma membrane-bound callose synthase. The inhibition effect is dependent on the chemical structure of the compound, which does not affect endomembrane morphology of the plant cells, but causes changes in cell wall composition. Chemical A represents a novel drug with a great potential for the study of the mechanisms of Golgi and plasma membrane-bound glucosyltransferases.
基金Supported by the National Natural Science Foundation of China (30471046), the State Key Basic Research and Development Program of China (2003CB114303) and Natural Science Foundation of Jiangsu Province (BK2002048).Acknowledgements The authors thank Professor Jian-Hua Zhang (Biology Department, Hong Kong Baptist College, Kowloon Tang, Hong Kong) and Professor Ming Yuan (College of Biological Sciences, China Agricultural University, Beijing, China) for their kind support.
文摘We studied the perception of plant cells to osmotic stress that leads to the accumulation of abscisic acid (ABA) in stressed Arabidopsis thaliana L. cells. A significant difference was found between protoplasts and cells in terms of their responses to osmotic stress and ABA biosynthesis, implying that cell wall and/or cell wall-plasma membrane interaction are essential in identifying osmotic stress. Western blotting and immunofluorescence localization experiments, using polyclonal antibody against human integrin β1, revealed the existence of a protein similar to the integrin protein of animals in the suspension-cultured cells located in the plasma membrane fraction. Treatment with a synthetic pentapeptide, Gly-Arg-Gly-Asp-Ser (GRGDS), which contains an RGD domain and interacts specifically with integrin protein and thus blocks the cell wall-plasma membrane interaction, significantly inhibited osmotic stress-induced ABA biosynthesis in cells, but not in protoplasts. These results demonstrate that cell wall and/or cell wall-plasma membrane interaction mediated by integrin-Iike proteins played important roles in osmotic stress-induced ABA biosynthesis in Arabidopsis thaliana.
基金supported by the National Natural Science Foundation of China(31570246 and 32170279)the Fundamental Research Funds for the Central Universities(2572019CT03)。