The effects of working pressure on the component, surface morphology, surface roughness, and deposition rate of glow discharge polymer (GDP) films by a trans-2-butene/hydrogen gas mixture were investigated based on ...The effects of working pressure on the component, surface morphology, surface roughness, and deposition rate of glow discharge polymer (GDP) films by a trans-2-butene/hydrogen gas mixture were investigated based on plasma characteristics diagnosis. The composition and ion energy distributions of a multi-carbon (CaHs/H2) plasma mixture at different working pressures were diagnosed by an energy-resolved mass spectrometer (MS) during the GDP film deposition process. The Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscope (SEM) and white-fight interferometer (WLI) results were obtained to investigate the structure, morphology and roughness characterization of the deposited films, respectively. It was found that the degree of ionization of the C4H8/H2 plasma reduces with an increase in the working pressure. At a low working pressure, the C-H fragments exhibited small-mass and high ion energy in plasma. In this case, the film had a low CH3/CH2 ratio, and displayed a smooth surface without any holes, cracks or asperities. While the working pressure increased to 15 Pa, the largest number of large-mass fragments led to the deposition rate reaching a maximum of 2.11 #m h-1, and to hole defects on the film surface. However, continuing to increase the working pressure, the film surface became smooth again, and the interface between clusters became inconspicuous without etching pits.展开更多
Surfaces of optical elements are deposited by antireflection coatings (ARCs) to decrease the reflection of light. Surface needs treatment before depositing the ARC one of treatment processes by plasma for adhesion imp...Surfaces of optical elements are deposited by antireflection coatings (ARCs) to decrease the reflection of light. Surface needs treatment before depositing the ARC one of treatment processes by plasma for adhesion improvement and surface hardening. A comparison of RF and DC glow discharges treated CR-39 polymer films gives insight into the mechanism of these surface processes. The surface properties of the plasma-treated samples are examined by microscopy techniques include contact angle measurements, scanning electron microscopy (SEM), atomic force microscopy (AFM), infrared (IR) spectroscopy and refractive index measurements. Results show that the plasma treatment modifies the polymer surface in both composition and morphology. It is found that the surface wettability is enhanced after plasma treatment. It is found that, RF plasma is more effective than DC plasma in CR-39 surface modification, as it implants more oxygen atoms into the surface and makes the contact angle declining to a lower level.展开更多
基金financially supported by National Natural Science Foundation of China (No. 51401194)
文摘The effects of working pressure on the component, surface morphology, surface roughness, and deposition rate of glow discharge polymer (GDP) films by a trans-2-butene/hydrogen gas mixture were investigated based on plasma characteristics diagnosis. The composition and ion energy distributions of a multi-carbon (CaHs/H2) plasma mixture at different working pressures were diagnosed by an energy-resolved mass spectrometer (MS) during the GDP film deposition process. The Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscope (SEM) and white-fight interferometer (WLI) results were obtained to investigate the structure, morphology and roughness characterization of the deposited films, respectively. It was found that the degree of ionization of the C4H8/H2 plasma reduces with an increase in the working pressure. At a low working pressure, the C-H fragments exhibited small-mass and high ion energy in plasma. In this case, the film had a low CH3/CH2 ratio, and displayed a smooth surface without any holes, cracks or asperities. While the working pressure increased to 15 Pa, the largest number of large-mass fragments led to the deposition rate reaching a maximum of 2.11 #m h-1, and to hole defects on the film surface. However, continuing to increase the working pressure, the film surface became smooth again, and the interface between clusters became inconspicuous without etching pits.
文摘Surfaces of optical elements are deposited by antireflection coatings (ARCs) to decrease the reflection of light. Surface needs treatment before depositing the ARC one of treatment processes by plasma for adhesion improvement and surface hardening. A comparison of RF and DC glow discharges treated CR-39 polymer films gives insight into the mechanism of these surface processes. The surface properties of the plasma-treated samples are examined by microscopy techniques include contact angle measurements, scanning electron microscopy (SEM), atomic force microscopy (AFM), infrared (IR) spectroscopy and refractive index measurements. Results show that the plasma treatment modifies the polymer surface in both composition and morphology. It is found that the surface wettability is enhanced after plasma treatment. It is found that, RF plasma is more effective than DC plasma in CR-39 surface modification, as it implants more oxygen atoms into the surface and makes the contact angle declining to a lower level.