Introduction: Bacterial skin and soft tissue infections (SSTIs) are a cause of frequent inpatient and outpatient care visits whose causative agents are associated with a high antimicrobial resistance burden. For insig...Introduction: Bacterial skin and soft tissue infections (SSTIs) are a cause of frequent inpatient and outpatient care visits whose causative agents are associated with a high antimicrobial resistance burden. For insights on antimicrobial susceptibilities in a rural setting, we examined specimens from suspected SSTIs from two public health facilities in Kenya. We additionally assessed antibiotic use, appropriateness of empiric therapy and risk factors for SSTI. Methodology: Between 2021 and 2023, 265 patients at Kisii and Nyamira County Referral hospitals were enrolled. Wound swabs/aspirates were collected and processed following standard microbiological procedures. Identification and antimicrobial susceptibility were performed using the VITEK 2 Compact platform. Demographic, clinical, and microbiological data were analyzed with R Statistical software. Results: S. aureus was isolated in 16.2% (43/265) of patients with a methicillin resistance (MRSA) proportion of 14% (6/43). While 13/15 drugs elicited susceptibilities ranging from 84% - 100%, penicillin (16%) and trimethoprim-sulfamethoxazole [TMP-SXT] (23%) yielded the lowest susceptibilities. Escherichia coli (n = 33), Klebsiella pneumoniae (n = 8), Pseudomonas aeruginosa (n = 8), and Citrobacter species (n = 4) were the most commonly isolated gram-negative species. Gram-negative strains showed high susceptibilities to most of the tested drugs (71% - 100%) with the exception of ampicillin (18%), TMP-SXT (33%), and first and second generation cephalosporins. Conclusions: The low MRSA prevalence and generally high antibiotic susceptibilities for S. aureus and gram-negative bacteria present opportunities for antibiotic stewardship in the study setting. Diminished susceptibilities against penicillin/ampicillin and TMP-SXT accord with prevailing local data and add a layer of evidence for their cautious empiric use.展开更多
BACKGROUND Immunosuppression is an important factor in the incidence of infections in transplant recipient.Few studies are available on the management of immunosuppression(IS)treatment in the liver transplant(LT)recip...BACKGROUND Immunosuppression is an important factor in the incidence of infections in transplant recipient.Few studies are available on the management of immunosuppression(IS)treatment in the liver transplant(LT)recipients complicated with infection.The aim of this study is to describe our experience in the management of IS treatment during bacterial bloodstream infection(BSI)in LT recipients and assess the effect of temporary IS withdrawal on 30 d mortality of recipients presenting with severe infection.AIM To assess the effect of temporary IS withdrawal on 30 d mortality of LT recipients presenting with severe infection.METHODS A retrospective study was conducted with patients diagnosed with BSI after LT in the Department of Liver Surgery,Renji Hospital from January 1,2016 through December 31,2017.All recipients diagnosed with BSI after LT were included.Univariate and multivariate Cox regression analysis of risk factors for 30 d mortality was conducted in the LT recipients with Gram-negative bacterial(GNB)infection.RESULTS Seventy-four episodes of BSI were identified in 70 LT recipients,including 45 episodes of Gram-positive bacterial(GPB)infections in 42 patients and 29 episodes of GNB infections in 28 patients.Overall,IS reduction(at least 50%dose reduction or cessation of one or more immunosuppressive agent)was made in 28(41.2%)cases,specifically,in 5(11.9%)cases with GPB infections and 23(82.1%)cases with GNB infections.The 180 d all-cause mortality rate was 18.5%(13/70).The mortality rate in GNB group(39.3%,11/28)was significantly higher than that in GPB group(4.8%,2/42)(P=0.001).All the deaths in GNB group were attributed to worsening infection secondary to IS withdrawal,but the deaths in GPB group were all due to graft-versus-host disease.GNB group was associated with significantly higher incidence of intra-abdominal infection,IS reduction,and complete IS withdrawal than GPB group(P<0.05).Cox regression showed that rejection(adjusted hazard ratio 7.021,P=0.001)and complete IS withdrawal(adjusted hazard ratio 12.65,P=0.019)were independent risk factors for 30 d mortality in patients with GNB infections after LT.CONCLUSION IS reduction is more frequently associated with GNB infection than GPB infection in LT recipients.Complete IS withdrawal should be cautious due to increased risk of mortality in LT recipients complicated with BSI.展开更多
The incidence of gram-negative multidrug-resistant(MDR) bacterial pathogens is increasing in hospitals and particularly in the intensive care unit(ICU) setting. The clinical consequences of infections caused by MDR pa...The incidence of gram-negative multidrug-resistant(MDR) bacterial pathogens is increasing in hospitals and particularly in the intensive care unit(ICU) setting. The clinical consequences of infections caused by MDR pathogens remain controversial. The purpose of this review is to summarize the available data concerning the impact of these infections on mortality in ICU patients. Twenty-four studies, conducted exclusively in ICU patients, were identified through Pub Med search over the years 2000-2015. Bloodstream infection was the only infection examined in eight studies, respiratory infections in four and variable infections in others. Comparative data on the appropriateness of empirical antibiotic treatment were provided by only seven studies. In ten studies the presence of antimicrobial resistance was not associated with increased mortality; on the contrary, in other studies a significant impact of antibiotic resistance on mortality was found, though, sometimes, mediated by inappropriate antimicrobial treatment. Therefore, a direct association between infections due to gram-negative MDR bacteria and mortality in ICU patients cannot be confirmed. Sample size, presence of multiple confounders and other methodological issues may influence the results. These data support the need for further studies to elucidate the real impact of infections caused by resistant bacteria in ICU patients.展开更多
PCR and DNA sequencing were used to screen and characterize integrons and resistance genes in Gram-negative bacteria isolated from seafood products in Japan.A total of 215 Gram-negative bacteria were isolated from loc...PCR and DNA sequencing were used to screen and characterize integrons and resistance genes in Gram-negative bacteria isolated from seafood products in Japan.A total of 215 Gram-negative bacteria were isolated from local and imported seafood samples collected from retail markets in Hiroshima Prefecture.Class 1 integrons containing gene cassettes encoding resistance to trimethoprim展开更多
Humanity is facing an enormous and growing worldwide threat from the emergence of multi-drug-resistant(MDR)Gram-negative bacteria such as Escherichia coli,Klebsiella pneumoniae,and Acinetobacter baumannii.Polymyxin B ...Humanity is facing an enormous and growing worldwide threat from the emergence of multi-drug-resistant(MDR)Gram-negative bacteria such as Escherichia coli,Klebsiella pneumoniae,and Acinetobacter baumannii.Polymyxin B and E(colistin)constitute the last-line therapies for treating MDR Gram-negative bacteria.Polymyxin is a cationic antibacterial peptide that can destroy the outer membrane of Gram-negative bacteria.With the increasing clinical application of polymyxin,however,there have been many reports of the occurrence of polymyxin-resistant Gram-negative bacteria.This resistance is mainly mediated by the modification or complete loss of lipopolysaccharide(LPS).LPS is also a virulence factor of Gram-negative bacteria,and alterations of LPS may correlate with virulence.Although it is generally believed that the biological costs associated with drug resistance may enable benign susceptible bacteria to overcome resistant bacteria when antibiotic pressure is reduced,some studies have shown that polymyxin-resistant bacteria are associated with higher virulence and greater fitness compared with their susceptible counterparts.To predict the development of polymyxin resis-tance and evaluate interventions for its mitigation,it is important to understand the relative biological cost of polymyxin resistance compared with susceptibility.The impact of polymyxin resistance mecha-nisms on the virulence and fitness of these three Gram-negative bacteria are summarized in this review.展开更多
Protein secretion plays an important role in bacterial lifestyles. In Gram-negative bacteria, a wide range of proteins are secreted to modulate the interactions of bacteria with their environments and other bacteria v...Protein secretion plays an important role in bacterial lifestyles. In Gram-negative bacteria, a wide range of proteins are secreted to modulate the interactions of bacteria with their environments and other bacteria via various secretion systems. These proteins are essential for the virulence of bacteria, so it is crucial to study them for the pathogenesis of diseases and the development of drugs. Using amino acid composition (AAC), position-specific scoring matrix (PSSM) and N-terminal signal peptides, two different substitution models are firstly constructed to transform protein sequences into numerical vectors. Then, based on support vector machine (SVM) and the “one to one”?algorithm, a hybrid multi-classifier named SecretP v.2.2 is proposed to rapidly and accurately?distinguish different types of Gram-negative?bacterial secreted proteins. When performed on the same test set for a comparison with other methods, SecretP v.2.2 gets the highest total sensitivity of 93.60%. A public independent dataset is used to further test the power of SecretP v.2.2 for predicting NCSPs, it also yields satisfactory results.展开更多
Objective:To detect and evaluate the various methods for metallo-β-lactamases(MBL) production in Pseudomonas aeruginosa(P.aeruginosa) and Acinetobacter species.Methods:A total of 109 P.aeruginosa and 85 Acinetobacter...Objective:To detect and evaluate the various methods for metallo-β-lactamases(MBL) production in Pseudomonas aeruginosa(P.aeruginosa) and Acinetobacter species.Methods:A total of 109 P.aeruginosa and 85 Acinetobacter species were screened for imipenem resistance by Kirby- Bauer disc diffusion methods.Detection of MBL production was(lone by imipenem-EDTA combined disc test,double disc synerygy test(DDST) and imipenem-EDTA MBL E test.Results: A total of 63(57.8%) strains of P.aeruginosa and 46(54.1%) strains of Acinetobacter spp.were found to be resistant to imipenem.Of the 63 imipenem resistant P.aeruginosa tested for MBL production.44(69.89;) were found to be positive and among 46 imipenem resistant Acinetobacter. 19(41.3%) were shown to be the MBL producers.Conclusions:Imipenem-EDTA combined disc test and MBL E test are equally effective for MBL detection in both P.aeruginosa and Acinetobacter spp.,but given the cost-constraints,combined disc can be used as a convenient screening method in the clinical microbiology laboratory.展开更多
Over the past years, infectious disease has caused enormous economic loss in pig industry. Among the pathogens, gram negative bacteria not only cause inflammation, but also cause different diseases and make the pigs m...Over the past years, infectious disease has caused enormous economic loss in pig industry. Among the pathogens, gram negative bacteria not only cause inflammation, but also cause different diseases and make the pigs more susceptible to virus infection. Vaccination, medication and elimination of sick pigs are major strategies of controlling disease. Genetic methods, such as selection of disease resistance in the pig, have not been widely used. Recently, the completion of the porcine whole genome sequencing has provided powerful tools to identify the genome regions that harboring genes controlling disease or immunity. Immunogenornics, which combines DNA variations, transcriptorne, immune response, and QTL mapping data to illustrate the interactions between pathogen and host immune system, will be an effective genomics tool for identification of disease resistance genes in pigs. These genes will be potential targets for disease resistance in breeding programs. This paper reviewed the progress of disease resistance study in the pig focusing on Gram-negative bacilli. Major porcine Gram-negative bacilli and diseases, suggested candidate genes/pathways against porcine Gram-negative bacilli, and distributions of QTLs for immune capacity on pig chromosomes were summarized. Some tools for immunogenomics research were described. We conclude that integration of sequencing, whole genome associations, functional genomics studies, and immune response information is necessary to illustrate molecular mechanisms and key genes in disease resistance.展开更多
Our aim was to determine the epidemiological characteristics, the resistance patterns and the spread of Gram negative bacteria related to colonization of patients in adult Intensive Care Units. Methods: A prospective ...Our aim was to determine the epidemiological characteristics, the resistance patterns and the spread of Gram negative bacteria related to colonization of patients in adult Intensive Care Units. Methods: A prospective cohort of patients colonized and/or infected with Gram negative bacteria was conducted at two adult ICUs from hospitals in Brazil (April 2012 to February 2013). Nasal, groin and perineum swabs were performed. Samples were incubated on MacConkey and cetrimide agar (48 h at 37℃) and identification tests (Vitek-BioMérieux), antibiogram (Bauer-Kirby method), Carba NP test, Polymerase Chain Reaction (PCR) and sequencing were performed. The patterns of resistant microorganisms were compared by rep-PCR (Diversilab). Results: There were 53 cases of colonization. In these cases, we identified imipenem-resistant Acinetobacter baumannii (51%), Pseudomonas aeruginosa (32%), Klebsiella pneumoniae ESBL (38%) or imipenem resistant (5.6%). The use of antimicrobials and medical devices were related to colonization (p The resistance patterns expressed by Klebsiella pneumoniae were ESBL (CTX-M, SHV e TEM) and KPC2. A verified profile of Acinetobacter baumannii was related to OXA-23 and OXA-253 (OXA-143 variant). The profiles ESBL and KPC2 expressed by Klebsiella pneumoniae were distributed between the both ICUs. The distribution of OXA-23 and OXA-253 was verified only in one ICU. The similarity of strains ranged from 80% to 95%, highlighting the horizontal transference of these microorganisms.展开更多
Methylation of 16S rRNA is an important mechanism of aminoglycoside resistance among gram-negative pathogens. In this report, 16S rRNA methylase genes were amplified using PCR among gram-negative bacillus isolates fro...Methylation of 16S rRNA is an important mechanism of aminoglycoside resistance among gram-negative pathogens. In this report, 16S rRNA methylase genes were amplified using PCR among gram-negative bacillus isolates from hospitals in the Changchun area of China and 16S rRNA methylase genotypes (armA, rmtB, rmtA, rmtC, rmtD, and npmA) were identified by direct sequencing. Fifty of the isolates (43.1%) harbored 16S rRNA methylase genes. The common 16S rRNA methylase genes were armA and rmtB (12.1% and 31.0%, respectively), whereas the rmtA, rmtC, rmtD, and npmA genes were absent from the sample. It suggests that the predominant 16S rRNA methylase genes among gramnegative bacilli in the Changchun area are armA and rmtB.展开更多
Antibiotic resistant bacteria pathogens remain the leading cause of shellfish borne diseases and a major health threat to humans worldwide. The objectives of this study were to isolate, identify, and determine the ant...Antibiotic resistant bacteria pathogens remain the leading cause of shellfish borne diseases and a major health threat to humans worldwide. The objectives of this study were to isolate, identify, and determine the antibiotic resistance patterns of Gram-negative bacteria from shellfish. We analyzed a total of 540 shellfish (117 clams, 88 oysters, and 136 periwinkles) samples collected from different vendors at Iko and Douglas Creeks in Akwa Ibom State, South-South Nigeria. Conventional cultural techniques, morphological, biochemical characteristics, and PCR amplification were used to identify the bacterial isolates. Antibiotic susceptibility tests (Kirby-Bauer disk diffusion method) and ESBL phenotype (disk) of the isolates were performed. One hundred and thirty-five (135) Gram-negative bacteria comprising 5 genera and 14 species were detected at a prevalence of: <i>Alcaligenes faecalis</i> <i><b>TRB</b></i>-7 38 (28.2%), <i>Pseudomonas oryzihabitans strain <b>KCB</i>005</b> 16 (11.9%), <i>Paenalcaligenes retgerii strain <b>B</i>5</b> 12 (8.9%) <i>Pseudomonas aeruginosa <b>JB</i>2</b> 10 (7.4%), <i>Providencia stuartii <b>DMC</i>-28b</b> 9 (6.7%), <i>Alcaligenes species <b>TLT</i>151</b> 8 (5.9%), <i>Pseudomonas aeruginosa <b>CIFRI DTSB</i>1</b> 7 (5.2%), <i>Paenalcaligenes species <b>UN</i>24</b> 7 (5.2%), <i>Alcaligenes faecalis <b>BT</i>10</b> 7 (5.2%), <i>Vibrio species strain <b>PrVy</i>108</b> 6 (4.4%), <i>Pseudomonas xiamenensis <b>C</i>10-2</b> 5 (3.7%), <i>Providencia vemicola <b>Bu</i>15_38</b> 4 (2.9%), <i>Pseudomonas anguillisceptica</i> <b>4029</b> 3 (2.2%), and <i>Pseudomonas aeruginosa <b>N</i>15-01092</b> 3 (2.2%). All tested isolates showed various degrees of resistance to the thirteen antimicrobials evaluated. High levels of resistance (100%) to cefepime and imipenem were expressed by all isolates except the <i>Providencia</i> species. For the EBSL indicators, all isolates apart from <i>Alcaligenes</i> species were resistant (100%) to ceftriaxone. All <i>Vibrio</i> species were susceptible to norfloxacin, nalidixic acid, and ceftazidime. The identification of antibiotic resistant Gram-negative bacteria (GNARB) from shellfish in this study highlights the risk of disseminated multi-drug resistance—a serious public health concern.展开更多
<b>Background:</b> The increasing resistance of bacteria to various antibiotics is a worldwide public health issue. Carbapenems that have elicited great hope in treating infections caused by multidrug-resi...<b>Background:</b> The increasing resistance of bacteria to various antibiotics is a worldwide public health issue. Carbapenems that have elicited great hope in treating infections caused by multidrug-resistant germs have seen their efficacy narrowed over time with the emergence of other novel resistance mechanisms, notably the production of Carbapenemases. <b>Methods:</b> A prospective cross-sectional study was conducted from May 2017 to May 2018 in Douala (Cameroon) to detect carbapenemase-producing Gram-negative bacilli. Isolated strains were identified using the Vitek2<sup>TM</sup> system. Antimicrobial susceptibility testing was performed using the Kirby-Bauer disk diffusion method on agar plates with 20 selected commercially available antibiotic discs. The bacterial strains were tested for the production of three Carbapenemases (OXA-48, NDM, KPC), using an immuno-chromatographic technique, with the “RESIST-3 O.K.N. K-SeT” rapid detection kit. <b>Results:</b> During the study period, 1687 strains of Gram-negative bacilli were isolated in selected laboratories with a total of 200 multi-resistant strains identified (11.9%). Among the multi-resistant strains, <i>E. coli</i> was the species most represented in <i>Enterobacteriaceae</i> (27.5%) followed by <i>K. pneumoniae</i> (15.5%) and the non-fermenting Gram-negative bacilli were predominantly <i>P. aeruginosa</i> (20.5%). These strains mainly came from urine and pus, <i>i.e.</i> 41% and 32% respectively. Thirty-two (16%) strains produced one of the Carbapenemases with a higher frequency at the General Hospital (84%). NDM-type carbapenemase was the most frequently identified (8.5%), OXA-48 type 7.5%, and no KPC production was observed. Among the <i>Enterobacteriaceae</i> 22.9% produced Carbapenemases and only 5.1% of the non-fermenting bacilli produced these enzymes. The isolates strains were completely resistant to all antibiotics except Amikacin and Fosfomycin. The strains producing the NDM-type carbapenemase showed higher rates of resistance to almost all of the antibiotics tested. <b>Conclusion:</b> Multidrug-resistant strains are experiencing an increase in evolution. The apparition of strains producing Carbapenemases prominently, the NDM and OXA-48 favor this increase. The activities of antibiotics with high efficacies on these strains are low.展开更多
The purpose of this study was to critically evaluate the impact of an institutional blood culture notification protocol called RAIDS (rapid administration of antimicrobials by an infectious diseases specialist) on t...The purpose of this study was to critically evaluate the impact of an institutional blood culture notification protocol called RAIDS (rapid administration of antimicrobials by an infectious diseases specialist) on time to optimization of antimicrobial therapy in hospitalized patients with gram-negative bacteremia. Time to antibiotic optimization was compared in patients with gram-negative bacilli isolated from blood cultures obtained from March-May 2011 (pre-RAIDS) versus March-May 2013 (post-RAIDS). The results show that patients in the pre-RAIDS study group had a significantly longer time to antibiotic optimization when compared to the post-RAIDS group (median (IQR), 27.6 (10.8-75.8) h vs. 3.1 (0.8-34.3) h, p = 0.03). The RAIDS protocol resulted in quicker time to antibiotic de-escalation (pre- vs. post-RAIDS; median (IQR), 27.6 (10.8-134.5) h vs. 4.3 (1.4-32.6) h, p = 0.03). There were no differences in clinical outcomes such as clinical cure, microbiological cure, and 30-day mortality between pre-RAIDS and post-RAIDS study groups. Patients in the post-RAIDS arm were more likely to receive appropriate empiric and definitive treatment. Implementation of the RAIDS protocol, which was an ASP (antimicrobial stewardship program) initiative, resulted in quicker time to antibiotic de-escalation and overall treatment optimization. RAIDS reduced the unnecessary use of broad-spectrum antimicrobial in this study population.展开更多
Objective: To compare the serum contents of inflammatory mediators and oxidative stress mediators between patients with gram-positive bacteria and gram-negative bacteria infection. Methods: Patients who were diagnosed...Objective: To compare the serum contents of inflammatory mediators and oxidative stress mediators between patients with gram-positive bacteria and gram-negative bacteria infection. Methods: Patients who were diagnosed with bloodstream bacterial infection in Zigong Third People's Hospital between March 2015 and April 2017 were selected as the research subjects and divided into gram-positive group and gram-negative group according to the results of blood culture and strain identification, and serum levels of inflammatory mediators PCT, IL-1β, IL-6, sTREM-1, TNF-α, NGAL, SAA, HPT and hs-CRP as well as oxidative stress mediators MDA, AOPP, TAC, CAT and SOD were determined. Results: Serum PCT, IL-1β, IL-6, sTREM-1, TNF-α, NGAL, SAA, HPT, hs-CRP, MDA and AOPP levels of gram-negative group were greatly higher than those of gram-positive group while TAC, CAT and SOD levels were greatly lower than those of gram-positive group. Conclusion: The changes of inflammatory mediators and oxidative stress mediators in the serum of patients with gram-negative bacteria infection are more significant than those of patients with gram-positive bacteria infection.展开更多
Conjugative transfer of antibiotic resistance genes(ARGs)by plasmids is an important route for ARG dissemination.An increasing number of antibiotic and nonantibiotic compounds have been reported to aid the spread of A...Conjugative transfer of antibiotic resistance genes(ARGs)by plasmids is an important route for ARG dissemination.An increasing number of antibiotic and nonantibiotic compounds have been reported to aid the spread of ARGs,highlighting potential challenges for controlling this type of horizontal transfer.Development of conjugation inhibitors that block or delay the transfer of ARG-bearing plasmids is a promising strategy to control the propagation of antibiotic resistance.Although such inhibitors are rare,they typically exhibit relatively high toxicity and low efficacy in vivo and their mechanisms of action are inadequately understood.Here,we studied the effects of dihydroartemisinin(DHA),an artemisinin derivative used to treat malaria,on conjugation.DHA inhibited the conjugation of the IncI2 and IncX4 plasmids carrying the mobile colistin resistance gene(mcr-1)by more than 160-fold in vitro in Escherichia coli,and more than two-fold(IncI2 plasmid)in vivo in a mouse model.It also suppressed the transfer of the IncX3 plasmid carrying the carbapenem resistance gene bla_(NDM-5)by more than twofold in vitro.Detection of intracellular adenosine triphosphate(ATP)and proton motive force(PMF),in combination with transcriptomic and metabolomic analyses,revealed that DHA impaired the function of the electron transport chain(ETC)by inhibiting the tricarboxylic acid(TCA)cycle pathway,thereby disrupting PMF and limiting the availability of intracellular ATP for plasmid conjugative transfer.Furthermore,expression levels of genes related to conjugation and pilus generation were significantly down-regulated during DHA exposure,indicating that the transfer apparatus for conjugation may be inhibited.Our findings provide new insights into the control of antibiotic resistance and the potential use of DHA.展开更多
To explore the prevalence of the plasmid-mediated quinolone resistance gene qnrA in Gramnegative bacteria and to investigate its molecular genetic background and resistance profile in isolates harboring this gene, a t...To explore the prevalence of the plasmid-mediated quinolone resistance gene qnrA in Gramnegative bacteria and to investigate its molecular genetic background and resistance profile in isolates harboring this gene, a total of 629 nalidixic acid-resistant isolates of non-repetitive Gram-negative bacteria were collected from clinical specimens between April 2004 and April 2006 and these isolates were screened for qnrA gene by PCR using specific primers combined with DNA sequencing. The extended spectrum β-1actamase (ESBL) or AmpC-producing isolates were distinguished by the phenotypic confirmatory test combined with DNA sequencing, and the antibiotics susceptibility test for qnrA-positive isolates was carried out by Kirby-Bauer and E-test method. To detect the location of the qnrA gene, plasmid conjugation and Southern hybridization were performed and the integron structure containing the qnrA gene was cloned by PCR strategy and sequenced by primer walking. It was demonstrated that the incidence of the qnrA-positive strains in nalidixic acid-resistant bacteria was 1.9% (12/629), in which the detection rates for Klebiesiella pneumoniae. Enterobacter cloacae, Enterobacter aerogenes, Citrobacterfreundii and Salmonella choeraesuis were 2.2% (3/138), 17. 1% (6/35), 9. 1% (1/11), 12.5% (1/8), and 14.3% (1/7), respectively. The qnrA gene was found to be embedded in the complex sull-type integron located on plasmids with varied size (80-180 kb). Among them, 4 qnrA-positive isolates carried integron In37 and 8 isolates carried a novel integron, temporarily desig- nated as InX. All the qnrA-positive isolates were ESBL-producing and transferable for the multi-drug resistance. It is concluded that the plasmid-mediated drug-resistance mechanism exists in the quinolone resistant strains of isolates from hospitals in Guangdong area, but the incidence was rather low. Nevertheless, it is still possible that the horizontal transfer of the resistant qnrA gene might lead to the spreading of drug-resistance.展开更多
An extensively drug-resistant(XDR)Escherichia coli strain 258E was isolated from an anal swab sample of a chicken farm of Anhui province in China.Genomic analyses indicated that the strain 258E harbors an incompatibil...An extensively drug-resistant(XDR)Escherichia coli strain 258E was isolated from an anal swab sample of a chicken farm of Anhui province in China.Genomic analyses indicated that the strain 258E harbors an incompatibility group N(IncN)plasmid pEC258-3,which co-produces bla_(CTX-M-3),bla_(KPC-2),bla_(TEM-1B),qnrS1,aac(6')-Ib-cr,dfrA14,arr-3,and aac(6')-Ib3.Multiple genome arrangement analyses indicated that pEC258-3 is highly homologous with pCRKP-1-KPC discovered in Klebsiella pneumoniae from a patient.Furthermore,conjugation experiments proved that plasmid pEC258-3 can be transferred horizontally and may pose a significant potential threat in animals,community and hospital settings.展开更多
文摘Introduction: Bacterial skin and soft tissue infections (SSTIs) are a cause of frequent inpatient and outpatient care visits whose causative agents are associated with a high antimicrobial resistance burden. For insights on antimicrobial susceptibilities in a rural setting, we examined specimens from suspected SSTIs from two public health facilities in Kenya. We additionally assessed antibiotic use, appropriateness of empiric therapy and risk factors for SSTI. Methodology: Between 2021 and 2023, 265 patients at Kisii and Nyamira County Referral hospitals were enrolled. Wound swabs/aspirates were collected and processed following standard microbiological procedures. Identification and antimicrobial susceptibility were performed using the VITEK 2 Compact platform. Demographic, clinical, and microbiological data were analyzed with R Statistical software. Results: S. aureus was isolated in 16.2% (43/265) of patients with a methicillin resistance (MRSA) proportion of 14% (6/43). While 13/15 drugs elicited susceptibilities ranging from 84% - 100%, penicillin (16%) and trimethoprim-sulfamethoxazole [TMP-SXT] (23%) yielded the lowest susceptibilities. Escherichia coli (n = 33), Klebsiella pneumoniae (n = 8), Pseudomonas aeruginosa (n = 8), and Citrobacter species (n = 4) were the most commonly isolated gram-negative species. Gram-negative strains showed high susceptibilities to most of the tested drugs (71% - 100%) with the exception of ampicillin (18%), TMP-SXT (33%), and first and second generation cephalosporins. Conclusions: The low MRSA prevalence and generally high antibiotic susceptibilities for S. aureus and gram-negative bacteria present opportunities for antibiotic stewardship in the study setting. Diminished susceptibilities against penicillin/ampicillin and TMP-SXT accord with prevailing local data and add a layer of evidence for their cautious empiric use.
基金Supported by the National Key R&D Precision Medicine Program,No.2017YFC0908100Shanghai Key Clinical Specialty Grant,No.Shslczdzk05801.
文摘BACKGROUND Immunosuppression is an important factor in the incidence of infections in transplant recipient.Few studies are available on the management of immunosuppression(IS)treatment in the liver transplant(LT)recipients complicated with infection.The aim of this study is to describe our experience in the management of IS treatment during bacterial bloodstream infection(BSI)in LT recipients and assess the effect of temporary IS withdrawal on 30 d mortality of recipients presenting with severe infection.AIM To assess the effect of temporary IS withdrawal on 30 d mortality of LT recipients presenting with severe infection.METHODS A retrospective study was conducted with patients diagnosed with BSI after LT in the Department of Liver Surgery,Renji Hospital from January 1,2016 through December 31,2017.All recipients diagnosed with BSI after LT were included.Univariate and multivariate Cox regression analysis of risk factors for 30 d mortality was conducted in the LT recipients with Gram-negative bacterial(GNB)infection.RESULTS Seventy-four episodes of BSI were identified in 70 LT recipients,including 45 episodes of Gram-positive bacterial(GPB)infections in 42 patients and 29 episodes of GNB infections in 28 patients.Overall,IS reduction(at least 50%dose reduction or cessation of one or more immunosuppressive agent)was made in 28(41.2%)cases,specifically,in 5(11.9%)cases with GPB infections and 23(82.1%)cases with GNB infections.The 180 d all-cause mortality rate was 18.5%(13/70).The mortality rate in GNB group(39.3%,11/28)was significantly higher than that in GPB group(4.8%,2/42)(P=0.001).All the deaths in GNB group were attributed to worsening infection secondary to IS withdrawal,but the deaths in GPB group were all due to graft-versus-host disease.GNB group was associated with significantly higher incidence of intra-abdominal infection,IS reduction,and complete IS withdrawal than GPB group(P<0.05).Cox regression showed that rejection(adjusted hazard ratio 7.021,P=0.001)and complete IS withdrawal(adjusted hazard ratio 12.65,P=0.019)were independent risk factors for 30 d mortality in patients with GNB infections after LT.CONCLUSION IS reduction is more frequently associated with GNB infection than GPB infection in LT recipients.Complete IS withdrawal should be cautious due to increased risk of mortality in LT recipients complicated with BSI.
文摘The incidence of gram-negative multidrug-resistant(MDR) bacterial pathogens is increasing in hospitals and particularly in the intensive care unit(ICU) setting. The clinical consequences of infections caused by MDR pathogens remain controversial. The purpose of this review is to summarize the available data concerning the impact of these infections on mortality in ICU patients. Twenty-four studies, conducted exclusively in ICU patients, were identified through Pub Med search over the years 2000-2015. Bloodstream infection was the only infection examined in eight studies, respiratory infections in four and variable infections in others. Comparative data on the appropriateness of empirical antibiotic treatment were provided by only seven studies. In ten studies the presence of antimicrobial resistance was not associated with increased mortality; on the contrary, in other studies a significant impact of antibiotic resistance on mortality was found, though, sometimes, mediated by inappropriate antimicrobial treatment. Therefore, a direct association between infections due to gram-negative MDR bacteria and mortality in ICU patients cannot be confirmed. Sample size, presence of multiple confounders and other methodological issues may influence the results. These data support the need for further studies to elucidate the real impact of infections caused by resistant bacteria in ICU patients.
基金supported by a Grant-in-Aid for Scientific Research(No.25460532 and 26.04912)to Tadashi S.from the Ministry of Education,Culture,Sports,Science,and Technology of Japan
文摘PCR and DNA sequencing were used to screen and characterize integrons and resistance genes in Gram-negative bacteria isolated from seafood products in Japan.A total of 215 Gram-negative bacteria were isolated from local and imported seafood samples collected from retail markets in Hiroshima Prefecture.Class 1 integrons containing gene cassettes encoding resistance to trimethoprim
基金supported by the National Key Research and Development Program of China (2017YFC1600100 and2017YFC1200203)the National Natural Science Foundation of China (81702040)the National Science Foundation of Zhejiang Province,China (LY20H190002)
文摘Humanity is facing an enormous and growing worldwide threat from the emergence of multi-drug-resistant(MDR)Gram-negative bacteria such as Escherichia coli,Klebsiella pneumoniae,and Acinetobacter baumannii.Polymyxin B and E(colistin)constitute the last-line therapies for treating MDR Gram-negative bacteria.Polymyxin is a cationic antibacterial peptide that can destroy the outer membrane of Gram-negative bacteria.With the increasing clinical application of polymyxin,however,there have been many reports of the occurrence of polymyxin-resistant Gram-negative bacteria.This resistance is mainly mediated by the modification or complete loss of lipopolysaccharide(LPS).LPS is also a virulence factor of Gram-negative bacteria,and alterations of LPS may correlate with virulence.Although it is generally believed that the biological costs associated with drug resistance may enable benign susceptible bacteria to overcome resistant bacteria when antibiotic pressure is reduced,some studies have shown that polymyxin-resistant bacteria are associated with higher virulence and greater fitness compared with their susceptible counterparts.To predict the development of polymyxin resis-tance and evaluate interventions for its mitigation,it is important to understand the relative biological cost of polymyxin resistance compared with susceptibility.The impact of polymyxin resistance mecha-nisms on the virulence and fitness of these three Gram-negative bacteria are summarized in this review.
文摘Protein secretion plays an important role in bacterial lifestyles. In Gram-negative bacteria, a wide range of proteins are secreted to modulate the interactions of bacteria with their environments and other bacteria via various secretion systems. These proteins are essential for the virulence of bacteria, so it is crucial to study them for the pathogenesis of diseases and the development of drugs. Using amino acid composition (AAC), position-specific scoring matrix (PSSM) and N-terminal signal peptides, two different substitution models are firstly constructed to transform protein sequences into numerical vectors. Then, based on support vector machine (SVM) and the “one to one”?algorithm, a hybrid multi-classifier named SecretP v.2.2 is proposed to rapidly and accurately?distinguish different types of Gram-negative?bacterial secreted proteins. When performed on the same test set for a comparison with other methods, SecretP v.2.2 gets the highest total sensitivity of 93.60%. A public independent dataset is used to further test the power of SecretP v.2.2 for predicting NCSPs, it also yields satisfactory results.
文摘Objective:To detect and evaluate the various methods for metallo-β-lactamases(MBL) production in Pseudomonas aeruginosa(P.aeruginosa) and Acinetobacter species.Methods:A total of 109 P.aeruginosa and 85 Acinetobacter species were screened for imipenem resistance by Kirby- Bauer disc diffusion methods.Detection of MBL production was(lone by imipenem-EDTA combined disc test,double disc synerygy test(DDST) and imipenem-EDTA MBL E test.Results: A total of 63(57.8%) strains of P.aeruginosa and 46(54.1%) strains of Acinetobacter spp.were found to be resistant to imipenem.Of the 63 imipenem resistant P.aeruginosa tested for MBL production.44(69.89;) were found to be positive and among 46 imipenem resistant Acinetobacter. 19(41.3%) were shown to be the MBL producers.Conclusions:Imipenem-EDTA combined disc test and MBL E test are equally effective for MBL detection in both P.aeruginosa and Acinetobacter spp.,but given the cost-constraints,combined disc can be used as a convenient screening method in the clinical microbiology laboratory.
基金supported by National Natural Science Foundation of China(30901021)863the Key Programs for Science and Technology Development of Hubei Province
文摘Over the past years, infectious disease has caused enormous economic loss in pig industry. Among the pathogens, gram negative bacteria not only cause inflammation, but also cause different diseases and make the pigs more susceptible to virus infection. Vaccination, medication and elimination of sick pigs are major strategies of controlling disease. Genetic methods, such as selection of disease resistance in the pig, have not been widely used. Recently, the completion of the porcine whole genome sequencing has provided powerful tools to identify the genome regions that harboring genes controlling disease or immunity. Immunogenornics, which combines DNA variations, transcriptorne, immune response, and QTL mapping data to illustrate the interactions between pathogen and host immune system, will be an effective genomics tool for identification of disease resistance genes in pigs. These genes will be potential targets for disease resistance in breeding programs. This paper reviewed the progress of disease resistance study in the pig focusing on Gram-negative bacilli. Major porcine Gram-negative bacilli and diseases, suggested candidate genes/pathways against porcine Gram-negative bacilli, and distributions of QTLs for immune capacity on pig chromosomes were summarized. Some tools for immunogenomics research were described. We conclude that integration of sequencing, whole genome associations, functional genomics studies, and immune response information is necessary to illustrate molecular mechanisms and key genes in disease resistance.
文摘Our aim was to determine the epidemiological characteristics, the resistance patterns and the spread of Gram negative bacteria related to colonization of patients in adult Intensive Care Units. Methods: A prospective cohort of patients colonized and/or infected with Gram negative bacteria was conducted at two adult ICUs from hospitals in Brazil (April 2012 to February 2013). Nasal, groin and perineum swabs were performed. Samples were incubated on MacConkey and cetrimide agar (48 h at 37℃) and identification tests (Vitek-BioMérieux), antibiogram (Bauer-Kirby method), Carba NP test, Polymerase Chain Reaction (PCR) and sequencing were performed. The patterns of resistant microorganisms were compared by rep-PCR (Diversilab). Results: There were 53 cases of colonization. In these cases, we identified imipenem-resistant Acinetobacter baumannii (51%), Pseudomonas aeruginosa (32%), Klebsiella pneumoniae ESBL (38%) or imipenem resistant (5.6%). The use of antimicrobials and medical devices were related to colonization (p The resistance patterns expressed by Klebsiella pneumoniae were ESBL (CTX-M, SHV e TEM) and KPC2. A verified profile of Acinetobacter baumannii was related to OXA-23 and OXA-253 (OXA-143 variant). The profiles ESBL and KPC2 expressed by Klebsiella pneumoniae were distributed between the both ICUs. The distribution of OXA-23 and OXA-253 was verified only in one ICU. The similarity of strains ranged from 80% to 95%, highlighting the horizontal transference of these microorganisms.
文摘Methylation of 16S rRNA is an important mechanism of aminoglycoside resistance among gram-negative pathogens. In this report, 16S rRNA methylase genes were amplified using PCR among gram-negative bacillus isolates from hospitals in the Changchun area of China and 16S rRNA methylase genotypes (armA, rmtB, rmtA, rmtC, rmtD, and npmA) were identified by direct sequencing. Fifty of the isolates (43.1%) harbored 16S rRNA methylase genes. The common 16S rRNA methylase genes were armA and rmtB (12.1% and 31.0%, respectively), whereas the rmtA, rmtC, rmtD, and npmA genes were absent from the sample. It suggests that the predominant 16S rRNA methylase genes among gramnegative bacilli in the Changchun area are armA and rmtB.
文摘Antibiotic resistant bacteria pathogens remain the leading cause of shellfish borne diseases and a major health threat to humans worldwide. The objectives of this study were to isolate, identify, and determine the antibiotic resistance patterns of Gram-negative bacteria from shellfish. We analyzed a total of 540 shellfish (117 clams, 88 oysters, and 136 periwinkles) samples collected from different vendors at Iko and Douglas Creeks in Akwa Ibom State, South-South Nigeria. Conventional cultural techniques, morphological, biochemical characteristics, and PCR amplification were used to identify the bacterial isolates. Antibiotic susceptibility tests (Kirby-Bauer disk diffusion method) and ESBL phenotype (disk) of the isolates were performed. One hundred and thirty-five (135) Gram-negative bacteria comprising 5 genera and 14 species were detected at a prevalence of: <i>Alcaligenes faecalis</i> <i><b>TRB</b></i>-7 38 (28.2%), <i>Pseudomonas oryzihabitans strain <b>KCB</i>005</b> 16 (11.9%), <i>Paenalcaligenes retgerii strain <b>B</i>5</b> 12 (8.9%) <i>Pseudomonas aeruginosa <b>JB</i>2</b> 10 (7.4%), <i>Providencia stuartii <b>DMC</i>-28b</b> 9 (6.7%), <i>Alcaligenes species <b>TLT</i>151</b> 8 (5.9%), <i>Pseudomonas aeruginosa <b>CIFRI DTSB</i>1</b> 7 (5.2%), <i>Paenalcaligenes species <b>UN</i>24</b> 7 (5.2%), <i>Alcaligenes faecalis <b>BT</i>10</b> 7 (5.2%), <i>Vibrio species strain <b>PrVy</i>108</b> 6 (4.4%), <i>Pseudomonas xiamenensis <b>C</i>10-2</b> 5 (3.7%), <i>Providencia vemicola <b>Bu</i>15_38</b> 4 (2.9%), <i>Pseudomonas anguillisceptica</i> <b>4029</b> 3 (2.2%), and <i>Pseudomonas aeruginosa <b>N</i>15-01092</b> 3 (2.2%). All tested isolates showed various degrees of resistance to the thirteen antimicrobials evaluated. High levels of resistance (100%) to cefepime and imipenem were expressed by all isolates except the <i>Providencia</i> species. For the EBSL indicators, all isolates apart from <i>Alcaligenes</i> species were resistant (100%) to ceftriaxone. All <i>Vibrio</i> species were susceptible to norfloxacin, nalidixic acid, and ceftazidime. The identification of antibiotic resistant Gram-negative bacteria (GNARB) from shellfish in this study highlights the risk of disseminated multi-drug resistance—a serious public health concern.
文摘<b>Background:</b> The increasing resistance of bacteria to various antibiotics is a worldwide public health issue. Carbapenems that have elicited great hope in treating infections caused by multidrug-resistant germs have seen their efficacy narrowed over time with the emergence of other novel resistance mechanisms, notably the production of Carbapenemases. <b>Methods:</b> A prospective cross-sectional study was conducted from May 2017 to May 2018 in Douala (Cameroon) to detect carbapenemase-producing Gram-negative bacilli. Isolated strains were identified using the Vitek2<sup>TM</sup> system. Antimicrobial susceptibility testing was performed using the Kirby-Bauer disk diffusion method on agar plates with 20 selected commercially available antibiotic discs. The bacterial strains were tested for the production of three Carbapenemases (OXA-48, NDM, KPC), using an immuno-chromatographic technique, with the “RESIST-3 O.K.N. K-SeT” rapid detection kit. <b>Results:</b> During the study period, 1687 strains of Gram-negative bacilli were isolated in selected laboratories with a total of 200 multi-resistant strains identified (11.9%). Among the multi-resistant strains, <i>E. coli</i> was the species most represented in <i>Enterobacteriaceae</i> (27.5%) followed by <i>K. pneumoniae</i> (15.5%) and the non-fermenting Gram-negative bacilli were predominantly <i>P. aeruginosa</i> (20.5%). These strains mainly came from urine and pus, <i>i.e.</i> 41% and 32% respectively. Thirty-two (16%) strains produced one of the Carbapenemases with a higher frequency at the General Hospital (84%). NDM-type carbapenemase was the most frequently identified (8.5%), OXA-48 type 7.5%, and no KPC production was observed. Among the <i>Enterobacteriaceae</i> 22.9% produced Carbapenemases and only 5.1% of the non-fermenting bacilli produced these enzymes. The isolates strains were completely resistant to all antibiotics except Amikacin and Fosfomycin. The strains producing the NDM-type carbapenemase showed higher rates of resistance to almost all of the antibiotics tested. <b>Conclusion:</b> Multidrug-resistant strains are experiencing an increase in evolution. The apparition of strains producing Carbapenemases prominently, the NDM and OXA-48 favor this increase. The activities of antibiotics with high efficacies on these strains are low.
文摘The purpose of this study was to critically evaluate the impact of an institutional blood culture notification protocol called RAIDS (rapid administration of antimicrobials by an infectious diseases specialist) on time to optimization of antimicrobial therapy in hospitalized patients with gram-negative bacteremia. Time to antibiotic optimization was compared in patients with gram-negative bacilli isolated from blood cultures obtained from March-May 2011 (pre-RAIDS) versus March-May 2013 (post-RAIDS). The results show that patients in the pre-RAIDS study group had a significantly longer time to antibiotic optimization when compared to the post-RAIDS group (median (IQR), 27.6 (10.8-75.8) h vs. 3.1 (0.8-34.3) h, p = 0.03). The RAIDS protocol resulted in quicker time to antibiotic de-escalation (pre- vs. post-RAIDS; median (IQR), 27.6 (10.8-134.5) h vs. 4.3 (1.4-32.6) h, p = 0.03). There were no differences in clinical outcomes such as clinical cure, microbiological cure, and 30-day mortality between pre-RAIDS and post-RAIDS study groups. Patients in the post-RAIDS arm were more likely to receive appropriate empiric and definitive treatment. Implementation of the RAIDS protocol, which was an ASP (antimicrobial stewardship program) initiative, resulted in quicker time to antibiotic de-escalation and overall treatment optimization. RAIDS reduced the unnecessary use of broad-spectrum antimicrobial in this study population.
文摘Objective: To compare the serum contents of inflammatory mediators and oxidative stress mediators between patients with gram-positive bacteria and gram-negative bacteria infection. Methods: Patients who were diagnosed with bloodstream bacterial infection in Zigong Third People's Hospital between March 2015 and April 2017 were selected as the research subjects and divided into gram-positive group and gram-negative group according to the results of blood culture and strain identification, and serum levels of inflammatory mediators PCT, IL-1β, IL-6, sTREM-1, TNF-α, NGAL, SAA, HPT and hs-CRP as well as oxidative stress mediators MDA, AOPP, TAC, CAT and SOD were determined. Results: Serum PCT, IL-1β, IL-6, sTREM-1, TNF-α, NGAL, SAA, HPT, hs-CRP, MDA and AOPP levels of gram-negative group were greatly higher than those of gram-positive group while TAC, CAT and SOD levels were greatly lower than those of gram-positive group. Conclusion: The changes of inflammatory mediators and oxidative stress mediators in the serum of patients with gram-negative bacteria infection are more significant than those of patients with gram-positive bacteria infection.
基金supported in part by grants from the Laboratory of Lingnan Modern Agriculture Project (NT2021006)National Key Research and Development Program of China (2022YFD1800400)。
文摘Conjugative transfer of antibiotic resistance genes(ARGs)by plasmids is an important route for ARG dissemination.An increasing number of antibiotic and nonantibiotic compounds have been reported to aid the spread of ARGs,highlighting potential challenges for controlling this type of horizontal transfer.Development of conjugation inhibitors that block or delay the transfer of ARG-bearing plasmids is a promising strategy to control the propagation of antibiotic resistance.Although such inhibitors are rare,they typically exhibit relatively high toxicity and low efficacy in vivo and their mechanisms of action are inadequately understood.Here,we studied the effects of dihydroartemisinin(DHA),an artemisinin derivative used to treat malaria,on conjugation.DHA inhibited the conjugation of the IncI2 and IncX4 plasmids carrying the mobile colistin resistance gene(mcr-1)by more than 160-fold in vitro in Escherichia coli,and more than two-fold(IncI2 plasmid)in vivo in a mouse model.It also suppressed the transfer of the IncX3 plasmid carrying the carbapenem resistance gene bla_(NDM-5)by more than twofold in vitro.Detection of intracellular adenosine triphosphate(ATP)and proton motive force(PMF),in combination with transcriptomic and metabolomic analyses,revealed that DHA impaired the function of the electron transport chain(ETC)by inhibiting the tricarboxylic acid(TCA)cycle pathway,thereby disrupting PMF and limiting the availability of intracellular ATP for plasmid conjugative transfer.Furthermore,expression levels of genes related to conjugation and pilus generation were significantly down-regulated during DHA exposure,indicating that the transfer apparatus for conjugation may be inhibited.Our findings provide new insights into the control of antibiotic resistance and the potential use of DHA.
文摘To explore the prevalence of the plasmid-mediated quinolone resistance gene qnrA in Gramnegative bacteria and to investigate its molecular genetic background and resistance profile in isolates harboring this gene, a total of 629 nalidixic acid-resistant isolates of non-repetitive Gram-negative bacteria were collected from clinical specimens between April 2004 and April 2006 and these isolates were screened for qnrA gene by PCR using specific primers combined with DNA sequencing. The extended spectrum β-1actamase (ESBL) or AmpC-producing isolates were distinguished by the phenotypic confirmatory test combined with DNA sequencing, and the antibiotics susceptibility test for qnrA-positive isolates was carried out by Kirby-Bauer and E-test method. To detect the location of the qnrA gene, plasmid conjugation and Southern hybridization were performed and the integron structure containing the qnrA gene was cloned by PCR strategy and sequenced by primer walking. It was demonstrated that the incidence of the qnrA-positive strains in nalidixic acid-resistant bacteria was 1.9% (12/629), in which the detection rates for Klebiesiella pneumoniae. Enterobacter cloacae, Enterobacter aerogenes, Citrobacterfreundii and Salmonella choeraesuis were 2.2% (3/138), 17. 1% (6/35), 9. 1% (1/11), 12.5% (1/8), and 14.3% (1/7), respectively. The qnrA gene was found to be embedded in the complex sull-type integron located on plasmids with varied size (80-180 kb). Among them, 4 qnrA-positive isolates carried integron In37 and 8 isolates carried a novel integron, temporarily desig- nated as InX. All the qnrA-positive isolates were ESBL-producing and transferable for the multi-drug resistance. It is concluded that the plasmid-mediated drug-resistance mechanism exists in the quinolone resistant strains of isolates from hospitals in Guangdong area, but the incidence was rather low. Nevertheless, it is still possible that the horizontal transfer of the resistant qnrA gene might lead to the spreading of drug-resistance.
基金the National Key Research and Development Program of China(2018YFE0192600)the Shanghai Agriculture Applied Technology Development Program,China(T20200104)+1 种基金the Fundamental Research Funds for the Central Universities,China(2020JB05)the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences(CAAS-ZDRW202203).
文摘An extensively drug-resistant(XDR)Escherichia coli strain 258E was isolated from an anal swab sample of a chicken farm of Anhui province in China.Genomic analyses indicated that the strain 258E harbors an incompatibility group N(IncN)plasmid pEC258-3,which co-produces bla_(CTX-M-3),bla_(KPC-2),bla_(TEM-1B),qnrS1,aac(6')-Ib-cr,dfrA14,arr-3,and aac(6')-Ib3.Multiple genome arrangement analyses indicated that pEC258-3 is highly homologous with pCRKP-1-KPC discovered in Klebsiella pneumoniae from a patient.Furthermore,conjugation experiments proved that plasmid pEC258-3 can be transferred horizontally and may pose a significant potential threat in animals,community and hospital settings.