The void evolution of large-section plastic mold steel during multi-directional forging(MDF)was investigated using multiscale analysis.To simulate the forging process of the plastic mold steel(SDP1 steel)and realize m...The void evolution of large-section plastic mold steel during multi-directional forging(MDF)was investigated using multiscale analysis.To simulate the forging process of the plastic mold steel(SDP1 steel)and realize micro-void reconstruction in a representative volume element(RVE),MDF experiment and void-characteristic evaluation of the SDP1 steel were carried out.Traditional upsetting and stretching forging(TUSF)and MDF were simulated to comparatively analyze the evolution of temperature,effective stress,and effective strain.By embedding RVE with a micro-void and using boundary condition by point tracking into the forging process,the single-void evolution in TUSF and MDF was studied.The effect of void orientation on single-void evolution was also investigated.The multi-scale analysis revealed the following results.(1)Compared with TUSF,MDF achieved a higher efficiency in void closure.(2)The closing efficiency of the void increased with the increase in angle h(the angle between the Z and long axes of the void).(3)The closing efficiency increased with the increase in the orientation angle during the forging process.On the basis of the important role of the main stress in each forging step on the void closure,an integral formula of the main stress was proposed.When main compressive-stress integration reached-0.4,the closed state of the void could be accurately determined.展开更多
In order to improve the machinability but not to impair other properties of the prehardened mold steel for plastic, the composition was designed by application of Thermo-Calc software package to regulate the type of n...In order to improve the machinability but not to impair other properties of the prehardened mold steel for plastic, the composition was designed by application of Thermo-Calc software package to regulate the type of non-metallic inclusion formed in the steel. The regulated non-metallic inclusion type was also observed by SEM and EDX. Then the machinability assessment of the steel with designed composition under different conditions was studied by the measurement of tool wear amount and cutting force. The results show that the composition of free cutting elements adding to mold steel for plastic can be optimized to obtain proper type of non-metallic inclusion in the aid of Thermo-Calc, compared with the large volume fraction of soft inclusion which is needed for promoting ductile fracture at low cutting speeds, the proper type of inclusion at high cutting speeds is glassy oxide inclusion. All those can be obtained in the present work.展开更多
基金This work is supported by National KeyR&D Program of China(Gran Nt oS.2016YFB0300400 and 2016YFB0300404).
文摘The void evolution of large-section plastic mold steel during multi-directional forging(MDF)was investigated using multiscale analysis.To simulate the forging process of the plastic mold steel(SDP1 steel)and realize micro-void reconstruction in a representative volume element(RVE),MDF experiment and void-characteristic evaluation of the SDP1 steel were carried out.Traditional upsetting and stretching forging(TUSF)and MDF were simulated to comparatively analyze the evolution of temperature,effective stress,and effective strain.By embedding RVE with a micro-void and using boundary condition by point tracking into the forging process,the single-void evolution in TUSF and MDF was studied.The effect of void orientation on single-void evolution was also investigated.The multi-scale analysis revealed the following results.(1)Compared with TUSF,MDF achieved a higher efficiency in void closure.(2)The closing efficiency of the void increased with the increase in angle h(the angle between the Z and long axes of the void).(3)The closing efficiency increased with the increase in the orientation angle during the forging process.On the basis of the important role of the main stress in each forging step on the void closure,an integral formula of the main stress was proposed.When main compressive-stress integration reached-0.4,the closed state of the void could be accurately determined.
基金Project(015211010) supported by the Key Project of Science and Technology Commission of Shanghai Local Govern ment China
文摘In order to improve the machinability but not to impair other properties of the prehardened mold steel for plastic, the composition was designed by application of Thermo-Calc software package to regulate the type of non-metallic inclusion formed in the steel. The regulated non-metallic inclusion type was also observed by SEM and EDX. Then the machinability assessment of the steel with designed composition under different conditions was studied by the measurement of tool wear amount and cutting force. The results show that the composition of free cutting elements adding to mold steel for plastic can be optimized to obtain proper type of non-metallic inclusion in the aid of Thermo-Calc, compared with the large volume fraction of soft inclusion which is needed for promoting ductile fracture at low cutting speeds, the proper type of inclusion at high cutting speeds is glassy oxide inclusion. All those can be obtained in the present work.