Tritium,a radioactive nuclide discharged by nuclear power plants,poses challenges for removal.Continuous online monitoring of tritium in water is crucial for real-time radiation data,given its predominant existence in...Tritium,a radioactive nuclide discharged by nuclear power plants,poses challenges for removal.Continuous online monitoring of tritium in water is crucial for real-time radiation data,given its predominant existence in the environment as water.This paper presents the design,simulation,and development of a tritium monitoring device utilizing a plastic scintillation fiber(PSF)array.Experimental validation confirmed the device’s detection efficiency and minimum detectable activity.The recorded detection efficiency of the device is 1.6×10^(-3),which exceeds the theoretically simulated value of 4×10^(-4)by four times.Without shielding,the device can achieve a minimum detectable activity of 3165 Bq L^(-1)over a 1600-second measurement duration.According to simulation and experimental results,enhancing detection efficiency is possible by increasing the number and length of PSFs and implementing rigorous shielding measures.Additionally,reducing the diameter of PSFs can also improve detection efficiency.The minimum detectable activity of the device can be further reduced using the aforementioned methods.展开更多
The photoelectric device of a scintillation dosimeter converts photons produced by radiation into an electrical signal.Its features directly determine the overall performance of the dosimeter.For a plastic scintillati...The photoelectric device of a scintillation dosimeter converts photons produced by radiation into an electrical signal.Its features directly determine the overall performance of the dosimeter.For a plastic scintillation fiber dosimeter(PSFD)with a current readout mode,systematic studies of the stability and light-dose response were performed for the photomultiplier tube(PMT),silicon photomultiplier(SiPM),avalanche photodiode(APD),and photodiode(PD).The temperature stability,long-term stability,repeatability,signal-to-noise ratio(SNR),and current dose response of the PSFD with the abovementioned photoelectric devices were studied using a pulsed LED light source and the Small Animal Radiation Therapy platform.An exponential relationship between the dark/ne current and temperature was obtained for all the devices.I is shown that the APD is the most sensitive device to temperature,with a current dependence on temperature reaching 6.5%C^(-1)at room temperature,whereas for the other devices this dependence is always<0:6%C^(-1).In terms of long-term stability,the net current of PD can change by up to 4%when working continuously for 8 h and 2%when working intermittently for 32 h,whereas for the other devices,the changes are all<1%.For the dose response,the PMT and SiPM exhibit excellent linear responses and SNRs within the range of 0.1-60 Gy/min For the PSFD with a current readout mode,the performance of the PMT and SiPM is concluded to be better than that of the other devices in the study.In particular,the SiPM,which has a compact size,low bias voltage,and antimagnetic interference,has great advantages for further applications.展开更多
Fundamental characteristics of the plastic scintillating fiber (PSF) as a detector for electromagnetic radiation (X & γ) are obtained by GEANT4 detector simulation tool package. The detector response to radiation...Fundamental characteristics of the plastic scintillating fiber (PSF) as a detector for electromagnetic radiation (X & γ) are obtained by GEANT4 detector simulation tool package. The detector response to radiation with energy of 10~400 keV is found out. Energy deposition as well as detector efficiency (DE) of the PSF are studied. In order to make linear array of the PSF for imaging purpose, the optimum length of fiber is also estimated.展开更多
Two plastic scintillating fiber position detectors for charged particles have been designed,built and installed inside the vacuum tube near two sides of the DM2 deflection magnet on the E3 beam line of the test beam f...Two plastic scintillating fiber position detectors for charged particles have been designed,built and installed inside the vacuum tube near two sides of the DM2 deflection magnet on the E3 beam line of the test beam facility at the BEPC-LINAC.A one-dimensional position resolution of~1 mm with a sensitive area of 60 mm×60 mm has been obtained for this detector.展开更多
基金supported by the Young Potential Program of the Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai Rising-Star Program,China(No.22YF1457800)the Chinese Academy of Sciences Youth Education Fund Program(No.E2292502)Gansu Major Scientific and Technological Special Project(No.23ZDGH001)。
文摘Tritium,a radioactive nuclide discharged by nuclear power plants,poses challenges for removal.Continuous online monitoring of tritium in water is crucial for real-time radiation data,given its predominant existence in the environment as water.This paper presents the design,simulation,and development of a tritium monitoring device utilizing a plastic scintillation fiber(PSF)array.Experimental validation confirmed the device’s detection efficiency and minimum detectable activity.The recorded detection efficiency of the device is 1.6×10^(-3),which exceeds the theoretically simulated value of 4×10^(-4)by four times.Without shielding,the device can achieve a minimum detectable activity of 3165 Bq L^(-1)over a 1600-second measurement duration.According to simulation and experimental results,enhancing detection efficiency is possible by increasing the number and length of PSFs and implementing rigorous shielding measures.Additionally,reducing the diameter of PSFs can also improve detection efficiency.The minimum detectable activity of the device can be further reduced using the aforementioned methods.
基金supported by the China Postdoctoral Science Foundation(No.2017M621818)the National Key Research and Development Project(Nos.2017YFF0206205 and2016YFB0501303)+1 种基金the National Natural Science Foundation of China(Nos.51873137 and 11705123)the Project of the State Key Laboratory of Radiation Medicine and Protection Soochow University(No.GZN1201801)。
文摘The photoelectric device of a scintillation dosimeter converts photons produced by radiation into an electrical signal.Its features directly determine the overall performance of the dosimeter.For a plastic scintillation fiber dosimeter(PSFD)with a current readout mode,systematic studies of the stability and light-dose response were performed for the photomultiplier tube(PMT),silicon photomultiplier(SiPM),avalanche photodiode(APD),and photodiode(PD).The temperature stability,long-term stability,repeatability,signal-to-noise ratio(SNR),and current dose response of the PSFD with the abovementioned photoelectric devices were studied using a pulsed LED light source and the Small Animal Radiation Therapy platform.An exponential relationship between the dark/ne current and temperature was obtained for all the devices.I is shown that the APD is the most sensitive device to temperature,with a current dependence on temperature reaching 6.5%C^(-1)at room temperature,whereas for the other devices this dependence is always<0:6%C^(-1).In terms of long-term stability,the net current of PD can change by up to 4%when working continuously for 8 h and 2%when working intermittently for 32 h,whereas for the other devices,the changes are all<1%.For the dose response,the PMT and SiPM exhibit excellent linear responses and SNRs within the range of 0.1-60 Gy/min For the PSFD with a current readout mode,the performance of the PMT and SiPM is concluded to be better than that of the other devices in the study.In particular,the SiPM,which has a compact size,low bias voltage,and antimagnetic interference,has great advantages for further applications.
文摘Fundamental characteristics of the plastic scintillating fiber (PSF) as a detector for electromagnetic radiation (X & γ) are obtained by GEANT4 detector simulation tool package. The detector response to radiation with energy of 10~400 keV is found out. Energy deposition as well as detector efficiency (DE) of the PSF are studied. In order to make linear array of the PSF for imaging purpose, the optimum length of fiber is also estimated.
基金Supported by National Natural Science Foundation of China (10675138)Bureau of Comprehensive Planning and Graveness Facility of CAS (29200731231123310)
文摘Two plastic scintillating fiber position detectors for charged particles have been designed,built and installed inside the vacuum tube near two sides of the DM2 deflection magnet on the E3 beam line of the test beam facility at the BEPC-LINAC.A one-dimensional position resolution of~1 mm with a sensitive area of 60 mm×60 mm has been obtained for this detector.