Thermoplastic starch is a kind of modified starch produced by mixing starch with additives and processing the mixture in an extruder. The mechanical properties, including tensile strength and elongation at break, biod...Thermoplastic starch is a kind of modified starch produced by mixing starch with additives and processing the mixture in an extruder. The mechanical properties, including tensile strength and elongation at break, biodegradability and rheological properties were studied. Glycerol and urea, to some extent, can both decrease the tensile strength and increase percentage elongation at break, because the former acts as a plasticizer and the latter can break down interactions among starch macromolecules. Thermoplastic starch shows thermoplasticity and its melt behaves as a pseudoplastic liquid at a low shear rate. Its biodegrading extent is slightly higher than that of native starch. The molecular weight of starch displays a decreasing tendency after thermoplastic modification.展开更多
Ethylene glycol, glycerol, sorbitol, formamide, and urea were used as plasticizers for the preparation of thermoplastic starch(TPS) from corn starch. The properties of TPS were tested by analysis method. The results...Ethylene glycol, glycerol, sorbitol, formamide, and urea were used as plasticizers for the preparation of thermoplastic starch(TPS) from corn starch. The properties of TPS were tested by analysis method. The results showed that TPSs were more highly plasticized with amines than alcohols. For the same type of plasticizer, the degree of plasticization decreased as the molecular weight of plasticizer increased. The relationship between plasticization degree and TPS properties was characterized and described by mechanical properties and water absorption. The experimental results showed that when the degree of plasticization increased, the tensile strength decreased and the elongation at breakage and water absorption increased.展开更多
In this paper,aliphatic amidediol was synthesized and mixed with glycerol used as a plasticizer for preparing thermoplastic starch(AGPTPS).The yield of aliphatic amidediol was 91%.FF-IR expressed that the mixture of...In this paper,aliphatic amidediol was synthesized and mixed with glycerol used as a plasticizer for preparing thermoplastic starch(AGPTPS).The yield of aliphatic amidediol was 91%.FF-IR expressed that the mixture of aliphatic amidediol and glycerol formed stronger and stable hydrogen bond with starch molecules compared to the native cornstarch.By scanning electron microscope(SEM)native cornstarch granules were proved to transfer to a homogeneous continuous system.After being stored for a period time at room temperature,the mechanical properties of AGPTPS were also studied.As a mixed plasticizer,aliphatic amidediol and glycerol would be practical to extend TPS application scopes.展开更多
in this paper, ethylenebisformamide was synthesized and used as a novel plasticizer for cornstarch to prepare thermoplastic starch (TPS). FT-IR expressed that ethylenebisformamide formed stronger and stable hydrogen...in this paper, ethylenebisformamide was synthesized and used as a novel plasticizer for cornstarch to prepare thermoplastic starch (TPS). FT-IR expressed that ethylenebisformamide formed stronger and stable hydrogen bond with starch molecules compared to the native cornstarch. X-ray diffraction (XRD) showed that the typical A-style crystallinity in the native starch has been destructed. By scanning electron microscope (SEM) native cornstarch granules were proved to transfer to a homogeneous system. After being stored for one week at RH=33%, the mechanical properties of EPTPS was also studied. The elongation reached to 264% utmost. As a novel plasticizer, ethylenebisformamide would be practical to extend TPS application scopes.展开更多
The use of magnesium in orthopedic and cardiovascular applications has been widely attracted by diminishing the risk of abnormal interaction of the implant with the body tissue and eliminating the second surgery to re...The use of magnesium in orthopedic and cardiovascular applications has been widely attracted by diminishing the risk of abnormal interaction of the implant with the body tissue and eliminating the second surgery to remove it from the body.Nevertheless,the fast degradation rate and generally inhomogeneous corrosion subsequently caused a decline in the mechanical strength of Mg during the healing period.Numerous researches have been conducted on the influences of various severe plastic deformation(SPD)processes on magnesium bioalloys and biocomposites.This paper strives to summarize the various SPD techniques used to achieve magnesium with an ultrafine-grained(UFG)structure.Moreover,the effects of various severe plastic deformation methods on magnesium microstructure,mechanical properties,and corrosion behavior have been discussed.Overall,this review intends to clarify the different potentials of applying SPD processes to the magnesium alloys and composites to augment their usage in biomedical applications.展开更多
Natural plant fibers, including flax, kenaf, jute, bamboo, ramie and much more are renewable and sustainable resources and are considered good candidates for cost-effective alternatives to glass and carbon fibers. In ...Natural plant fibers, including flax, kenaf, jute, bamboo, ramie and much more are renewable and sustainable resources and are considered good candidates for cost-effective alternatives to glass and carbon fibers. In this research, cross ply biodegradable composites were fabricated by press-forming method. The biodegradable composites consist of Manila hemp textile as a reinforcement and starch-based biodegradable plastics as a matrix was fabricated and investigated about mechanical properties. The tensile strength increased with the fiber content until fiber content of about 50% and leveled off thereafter. This dependence on the fiber content is due to the decrease in fiber strength of loading direction caused by fiber damages introduced during hot-pressing. In order to decrease the damage of fibers aligned in loading direction, Manila hemp textile was produced by using Manila hemp fibers for warp and biodegradable resin thread for weft. As a result, the tensile strength of cross ply composites increased from 153 MPa to 202 MPa.展开更多
Bio plastics products have a rapid growing demand and market across the globe. Polymers synthesized from renewable resources have gained immense popularity, in numerous applications ranging from films, bottles, food p...Bio plastics products have a rapid growing demand and market across the globe. Polymers synthesized from renewable resources have gained immense popularity, in numerous applications ranging from films, bottles, food packaging, drug delivery, bags to agriculture mulch films. Various naturally occurring resources available for starch and PLA extraction and the associated polymer processing techniques are discussed. Alongside some basic concepts on blown film extrusion, the modifications needed for such specialized polymer processing techniques are also explored, giving a comprehensive outlook on bioplastics. Special process analysis, for its application as films are discussed. In the current scenario, as the world aspires for environmental and polymer sustainability, Bioplastic products are of high value. The review article would be beneficial to those embarked on designing bio-plastics products from renewable resources.展开更多
This study aims for development of highly filled jute fiber reinforced composites that contains jute fiber over fiber weight fraction 60%,and jute fiber reinforced composite was fabricated by the hot-pressing method.T...This study aims for development of highly filled jute fiber reinforced composites that contains jute fiber over fiber weight fraction 60%,and jute fiber reinforced composite was fabricated by the hot-pressing method.The molding temperature was changed from 175°C to 230°C,to investigate the effect of molding temperature on the mechanical properties of jute fiber reinforced composites.The effect of surface treatment of jute fiber on the mechanical properties of jute fiber reinforced composites was also investigated.As a result,the jute fiber reinforced composites using surface treated fiber has low porosity,and the jute fiber reinforced composite having low porosity has high flexural strength and modulus.The jute fiber reinforced composite using acetone treated fiber molded at 200°C has the maximum flexural strength and modulus.展开更多
Wood plastic biocomposites of biodegradable poly(butylene succinate) (PBS) and Padauk sawdust was successfully pre- pared by using a twin screw extruder and an injection molding machine. The effects of water absor...Wood plastic biocomposites of biodegradable poly(butylene succinate) (PBS) and Padauk sawdust was successfully pre- pared by using a twin screw extruder and an injection molding machine. The effects of water absorption and sunlight exposure on some properties of the composites were investigated. Water absorption of PBS composites was found to follow the Fick's law of diffusion, while the diffusion coefficient increased with increasing wood content. Maximum water absorption of around 4.5% was observed at 30 wt.% sawdust. Optical micrograph indicated the swelling of wood particles by around 1% - 3% after 30 days of water immersion. The tensile and flexural strengths reduced slightly both under the water immersion and sunlight exposure. After 90 days of exposure, the composites clearly looked paler than the non-weathered ones. Thermal scan indicated the re- duction of crystalline region due to the plasticization effect derived from water molecules.展开更多
Plastic film is an important resource in agricultural production,but it takes hundreds of years to degrade completely in natural environment.The large-scale use of plastic film will inevitably lead to serious environm...Plastic film is an important resource in agricultural production,but it takes hundreds of years to degrade completely in natural environment.The large-scale use of plastic film will inevitably lead to serious environmental pollution.One way to solve the problem is to develop a substitutable mulching film,such as a biodegradable film that can ultimately be decomposed to water,carbon dioxide,and soil organic matter by micro-organisms.In this study,a 2-year experiment was conducted to determine the degradation properties of a biodegradable plastic film,including degradation rate,surface microstructure,tensile strength and elongation at break,and the effects of different mulching treatments on soil temperature and maize yield.The mulching experiment was conducted with three different biodegradable plastic films with different degradation rates,using a common plastic film and a non-mulched treatment as control.With the addition of the additives for degradation in the biodegradable plastic films,the degradation rates increased significantly,which were 7.2%-17.8%in 2017 and 18.1%-35.2%in 2018 after maize harvesting.However,the degradation occurred mainly on the ridge side.The decrease in tensile strength and elongation was proportional to the degradation rate of the degradable film.The SEM results indicated that the surface microstructures of the biodegradable films were loose and heterogeneous after maize harvesting.Biodegradable plastic film mulching increased the soil temperature at soil depths of 5 cm,15 cm,and 25 cm,over the maize’s entire growth period,by 3.1℃-3.2℃ in 2017 and 1.2℃-2.1℃ in 2018 compared with the non-mulched treatment.The biodegradable plastic film increased the maize yield by 10.4%-14.3%in 2017 and 11.6%-24.7%in 2018.The soil temperature and maize yield increases were statistically significant;however,with respect to maize qualities,there were no statistically significant increases among the five treatments.This study shows that biodegradable plastic film can be used as a substitute for common plastic film.However,the ingredients in biodegradable plastic films should be improved further to ensure that they can be degraded completely after crop harvest.展开更多
The use of plastics from petrochemical resources poses environmental impacts, and one of the alternative solutions is the use of starch. The objective of this present work has been to present the literature on starch,...The use of plastics from petrochemical resources poses environmental impacts, and one of the alternative solutions is the use of starch. The objective of this present work has been to present the literature on starch, and to highlight the debate in the development of composite films. The approach adopted was to present the state of the art on starch and thermoplastic starch matrix composites. The work shows that starch is available worldwide and can be used in the manufacture of biodegradable plastics;the debate remains on the reinforcement of thermoplastic starch to improve its physical and mechanical properties poor;then researchers must diversify the reinforcements to see the impact on the properties of thermoplastic starch.展开更多
文摘Thermoplastic starch is a kind of modified starch produced by mixing starch with additives and processing the mixture in an extruder. The mechanical properties, including tensile strength and elongation at break, biodegradability and rheological properties were studied. Glycerol and urea, to some extent, can both decrease the tensile strength and increase percentage elongation at break, because the former acts as a plasticizer and the latter can break down interactions among starch macromolecules. Thermoplastic starch shows thermoplasticity and its melt behaves as a pseudoplastic liquid at a low shear rate. Its biodegrading extent is slightly higher than that of native starch. The molecular weight of starch displays a decreasing tendency after thermoplastic modification.
基金Funded by the Fundamental Research Funds for the Central Universities(DL13CB13)the China Postdoctoral Science Foundation Funded Project(No.2014M550178)the National Natural Science Foundation of China(No.31200442)
文摘Ethylene glycol, glycerol, sorbitol, formamide, and urea were used as plasticizers for the preparation of thermoplastic starch(TPS) from corn starch. The properties of TPS were tested by analysis method. The results showed that TPSs were more highly plasticized with amines than alcohols. For the same type of plasticizer, the degree of plasticization decreased as the molecular weight of plasticizer increased. The relationship between plasticization degree and TPS properties was characterized and described by mechanical properties and water absorption. The experimental results showed that when the degree of plasticization increased, the tensile strength decreased and the elongation at breakage and water absorption increased.
文摘In this paper,aliphatic amidediol was synthesized and mixed with glycerol used as a plasticizer for preparing thermoplastic starch(AGPTPS).The yield of aliphatic amidediol was 91%.FF-IR expressed that the mixture of aliphatic amidediol and glycerol formed stronger and stable hydrogen bond with starch molecules compared to the native cornstarch.By scanning electron microscope(SEM)native cornstarch granules were proved to transfer to a homogeneous continuous system.After being stored for a period time at room temperature,the mechanical properties of AGPTPS were also studied.As a mixed plasticizer,aliphatic amidediol and glycerol would be practical to extend TPS application scopes.
文摘in this paper, ethylenebisformamide was synthesized and used as a novel plasticizer for cornstarch to prepare thermoplastic starch (TPS). FT-IR expressed that ethylenebisformamide formed stronger and stable hydrogen bond with starch molecules compared to the native cornstarch. X-ray diffraction (XRD) showed that the typical A-style crystallinity in the native starch has been destructed. By scanning electron microscope (SEM) native cornstarch granules were proved to transfer to a homogeneous system. After being stored for one week at RH=33%, the mechanical properties of EPTPS was also studied. The elongation reached to 264% utmost. As a novel plasticizer, ethylenebisformamide would be practical to extend TPS application scopes.
文摘The use of magnesium in orthopedic and cardiovascular applications has been widely attracted by diminishing the risk of abnormal interaction of the implant with the body tissue and eliminating the second surgery to remove it from the body.Nevertheless,the fast degradation rate and generally inhomogeneous corrosion subsequently caused a decline in the mechanical strength of Mg during the healing period.Numerous researches have been conducted on the influences of various severe plastic deformation(SPD)processes on magnesium bioalloys and biocomposites.This paper strives to summarize the various SPD techniques used to achieve magnesium with an ultrafine-grained(UFG)structure.Moreover,the effects of various severe plastic deformation methods on magnesium microstructure,mechanical properties,and corrosion behavior have been discussed.Overall,this review intends to clarify the different potentials of applying SPD processes to the magnesium alloys and composites to augment their usage in biomedical applications.
文摘Natural plant fibers, including flax, kenaf, jute, bamboo, ramie and much more are renewable and sustainable resources and are considered good candidates for cost-effective alternatives to glass and carbon fibers. In this research, cross ply biodegradable composites were fabricated by press-forming method. The biodegradable composites consist of Manila hemp textile as a reinforcement and starch-based biodegradable plastics as a matrix was fabricated and investigated about mechanical properties. The tensile strength increased with the fiber content until fiber content of about 50% and leveled off thereafter. This dependence on the fiber content is due to the decrease in fiber strength of loading direction caused by fiber damages introduced during hot-pressing. In order to decrease the damage of fibers aligned in loading direction, Manila hemp textile was produced by using Manila hemp fibers for warp and biodegradable resin thread for weft. As a result, the tensile strength of cross ply composites increased from 153 MPa to 202 MPa.
文摘Bio plastics products have a rapid growing demand and market across the globe. Polymers synthesized from renewable resources have gained immense popularity, in numerous applications ranging from films, bottles, food packaging, drug delivery, bags to agriculture mulch films. Various naturally occurring resources available for starch and PLA extraction and the associated polymer processing techniques are discussed. Alongside some basic concepts on blown film extrusion, the modifications needed for such specialized polymer processing techniques are also explored, giving a comprehensive outlook on bioplastics. Special process analysis, for its application as films are discussed. In the current scenario, as the world aspires for environmental and polymer sustainability, Bioplastic products are of high value. The review article would be beneficial to those embarked on designing bio-plastics products from renewable resources.
文摘This study aims for development of highly filled jute fiber reinforced composites that contains jute fiber over fiber weight fraction 60%,and jute fiber reinforced composite was fabricated by the hot-pressing method.The molding temperature was changed from 175°C to 230°C,to investigate the effect of molding temperature on the mechanical properties of jute fiber reinforced composites.The effect of surface treatment of jute fiber on the mechanical properties of jute fiber reinforced composites was also investigated.As a result,the jute fiber reinforced composites using surface treated fiber has low porosity,and the jute fiber reinforced composite having low porosity has high flexural strength and modulus.The jute fiber reinforced composite using acetone treated fiber molded at 200°C has the maximum flexural strength and modulus.
文摘Wood plastic biocomposites of biodegradable poly(butylene succinate) (PBS) and Padauk sawdust was successfully pre- pared by using a twin screw extruder and an injection molding machine. The effects of water absorption and sunlight exposure on some properties of the composites were investigated. Water absorption of PBS composites was found to follow the Fick's law of diffusion, while the diffusion coefficient increased with increasing wood content. Maximum water absorption of around 4.5% was observed at 30 wt.% sawdust. Optical micrograph indicated the swelling of wood particles by around 1% - 3% after 30 days of water immersion. The tensile and flexural strengths reduced slightly both under the water immersion and sunlight exposure. After 90 days of exposure, the composites clearly looked paler than the non-weathered ones. Thermal scan indicated the re- duction of crystalline region due to the plasticization effect derived from water molecules.
基金This research was financially supported by the Province Natural Science Foundation of Liaoning(20180550617)the Special Program for National Key Research and Development Project of China(2018YFD0300301)the Special Fund for Agro-scientific Research in the Public Interest of China(201503105&201303125).
文摘Plastic film is an important resource in agricultural production,but it takes hundreds of years to degrade completely in natural environment.The large-scale use of plastic film will inevitably lead to serious environmental pollution.One way to solve the problem is to develop a substitutable mulching film,such as a biodegradable film that can ultimately be decomposed to water,carbon dioxide,and soil organic matter by micro-organisms.In this study,a 2-year experiment was conducted to determine the degradation properties of a biodegradable plastic film,including degradation rate,surface microstructure,tensile strength and elongation at break,and the effects of different mulching treatments on soil temperature and maize yield.The mulching experiment was conducted with three different biodegradable plastic films with different degradation rates,using a common plastic film and a non-mulched treatment as control.With the addition of the additives for degradation in the biodegradable plastic films,the degradation rates increased significantly,which were 7.2%-17.8%in 2017 and 18.1%-35.2%in 2018 after maize harvesting.However,the degradation occurred mainly on the ridge side.The decrease in tensile strength and elongation was proportional to the degradation rate of the degradable film.The SEM results indicated that the surface microstructures of the biodegradable films were loose and heterogeneous after maize harvesting.Biodegradable plastic film mulching increased the soil temperature at soil depths of 5 cm,15 cm,and 25 cm,over the maize’s entire growth period,by 3.1℃-3.2℃ in 2017 and 1.2℃-2.1℃ in 2018 compared with the non-mulched treatment.The biodegradable plastic film increased the maize yield by 10.4%-14.3%in 2017 and 11.6%-24.7%in 2018.The soil temperature and maize yield increases were statistically significant;however,with respect to maize qualities,there were no statistically significant increases among the five treatments.This study shows that biodegradable plastic film can be used as a substitute for common plastic film.However,the ingredients in biodegradable plastic films should be improved further to ensure that they can be degraded completely after crop harvest.
文摘The use of plastics from petrochemical resources poses environmental impacts, and one of the alternative solutions is the use of starch. The objective of this present work has been to present the literature on starch, and to highlight the debate in the development of composite films. The approach adopted was to present the state of the art on starch and thermoplastic starch matrix composites. The work shows that starch is available worldwide and can be used in the manufacture of biodegradable plastics;the debate remains on the reinforcement of thermoplastic starch to improve its physical and mechanical properties poor;then researchers must diversify the reinforcements to see the impact on the properties of thermoplastic starch.