Based on high-resolution 2D seismic profiles, the Paleozoic structural deformation char- acteristics of Bachu (巴楚) uplift of northwestern Tarim basin, NW China, are exhibited in this article. The deformation happe...Based on high-resolution 2D seismic profiles, the Paleozoic structural deformation char- acteristics of Bachu (巴楚) uplift of northwestern Tarim basin, NW China, are exhibited in this article. The deformation happened during three main geological periods: the end of Middle-Late Ordovician (O2-3), the end of Early-Middle Devonian (D1-2), and the end of Late Permian (P2). In the Bachu uplift, there developed a series of NW-trending thrust faults and imbricate structures due to the effect of the NW-SE compression stress towards the end of Middle-Late Ordovician (O2-3) (middle Caledonian movement), and there developed some NNE-trending thrust faults and fault blocks under the control of the NEE-SWW compression stress at the end of Early-Middle Devonian (D1-2) (early Hercynian movement). However, at the end of Late Permian (P2) (late Hercynian movement), some NE-trending thrust faults and associated folds developed as a result of the NE-SW compression stress. The first-stage (O2-3) deformation is obviously more violent than those of the latter two stages (D1-2 and P2), which implies that the Tarim plate drifted quickly to the north at around the same time basin.展开更多
By using a dynamical approach of core-magma angular momentum exchange, this study theoretically explains the continental formation and plate drift as well as main mountain uplifts in the early Earth period. The presen...By using a dynamical approach of core-magma angular momentum exchange, this study theoretically explains the continental formation and plate drift as well as main mountain uplifts in the early Earth period. The present mantle and lithosphere were the partial part of magma fluid layer (mantle currents) before and after the Earth’s crust formation. Thus, a theory is presented regarding the driving forces of plate drift, in the form of planetary scale mantle currents. The origin of mantle currents is traced back to the formation of the solar system. It is assumed that small particles (nebula matter) orbiting the Sun assembled, and a molten sphere of primordial Earth with different minerals evenly distributed throughout the total mass came into existence. Subsequently, a process called planetary differentiation took place, as the core and mantle currents (magma layer) started separating. This will inevitably cause the Earth to spin faster, and it is presumed that the inner core first gained angular velocity, thereby spinning faster than the material found at a shallower depth. The time interval of the angular momentum exchange between the core and the magma should have lasted for at least 0.1 - 0.2 billion years. Planetary scale vertical and horizontal circulations of mantle currents took place, and angular momentum exchange was realized through the vertical component. The horizontal part of the mantle currents, near the bottom of the lithosphere, became a real force to drive continental split and plate drift. The acceleration and deceleration of the core compared with the mantle currents then caused different flow directions in the two hemispheres. When the inner core rotates faster from west to east, upper mantle currents will tend to flow westwards and towards the two poles. Surface lighter materials converged towards the two poles so that two continental polar crust caps appeared when the magma surface was cooling. This caused two original supercontinents to form about 4.54 billion years ago, while an original oceanic zone formed in the tropics. The uneven latitudinal variation of crustal thickness did lead to thermal differences within the mantle currents. This caused the core-magma angular momentum exchange. Deceleration of the core will cause two flow vectors, northwesterly in the Northern Hemisphere and southwesterly in the Southern Hemisphere. The history of plate drift is then driven by the motion of upper mantle currents. A distinct Equatorial Convergence Zone of magma flow which developed early in Earth’s history, gave way to the Intertropical Convergence Zone, serving as a border for the magma fluids and continents from the two hemispheres. A possible mechanism for the formation of the Himalayans is the maximum shear stress created by an orthogonal convergence or collision between two continental plates driven by the upper mantle currents.展开更多
The possibility of a net rotation of the lithosphere with respect to the mantle is generally overlooked since it depends on the adopted mantle reference frames, which are arbitrary. We review the geological and geophy...The possibility of a net rotation of the lithosphere with respect to the mantle is generally overlooked since it depends on the adopted mantle reference frames, which are arbitrary. We review the geological and geophysical signatures of plate boundaries, and show that they are markedly asymmetric worldwide. Then we compare available reference frames of plate motions relative to the mantle and discuss which is at best able to fit global tectonic data. Different assumptions about the depths of hotspot sources (below or within the asthenosphere, which decouples the lithosphere from the deep mantle) predict different rates of net rotation of the lithosphere relative to the mantle. The widely used no-net-rotation (NNR) reference frame, and low (〈0.2°-0.4°/Ma) net rotation rates (deep hotspots source) predict an average net rotation in which some plates move eastward relative to the mantle (e.g., Nazca). With fast (〉1°/Ma) net rotation (shallow hotspots source), all plates, albeit at different velocity, move westerly along a curved trajectory, with a tectonic equator tilted about 30° relative to the geographic equator. This is consistent with the observed global tectonic asymmetries.展开更多
基金supported by the National Science and Technology Project of Tenth Five Years (No. 2001BA605A06A)Science and the Technology Cooperation Programs of SINOPEC, China (Nos. FYWX04-06, XBKT2007KY10-021)
文摘Based on high-resolution 2D seismic profiles, the Paleozoic structural deformation char- acteristics of Bachu (巴楚) uplift of northwestern Tarim basin, NW China, are exhibited in this article. The deformation happened during three main geological periods: the end of Middle-Late Ordovician (O2-3), the end of Early-Middle Devonian (D1-2), and the end of Late Permian (P2). In the Bachu uplift, there developed a series of NW-trending thrust faults and imbricate structures due to the effect of the NW-SE compression stress towards the end of Middle-Late Ordovician (O2-3) (middle Caledonian movement), and there developed some NNE-trending thrust faults and fault blocks under the control of the NEE-SWW compression stress at the end of Early-Middle Devonian (D1-2) (early Hercynian movement). However, at the end of Late Permian (P2) (late Hercynian movement), some NE-trending thrust faults and associated folds developed as a result of the NE-SW compression stress. The first-stage (O2-3) deformation is obviously more violent than those of the latter two stages (D1-2 and P2), which implies that the Tarim plate drifted quickly to the north at around the same time basin.
文摘By using a dynamical approach of core-magma angular momentum exchange, this study theoretically explains the continental formation and plate drift as well as main mountain uplifts in the early Earth period. The present mantle and lithosphere were the partial part of magma fluid layer (mantle currents) before and after the Earth’s crust formation. Thus, a theory is presented regarding the driving forces of plate drift, in the form of planetary scale mantle currents. The origin of mantle currents is traced back to the formation of the solar system. It is assumed that small particles (nebula matter) orbiting the Sun assembled, and a molten sphere of primordial Earth with different minerals evenly distributed throughout the total mass came into existence. Subsequently, a process called planetary differentiation took place, as the core and mantle currents (magma layer) started separating. This will inevitably cause the Earth to spin faster, and it is presumed that the inner core first gained angular velocity, thereby spinning faster than the material found at a shallower depth. The time interval of the angular momentum exchange between the core and the magma should have lasted for at least 0.1 - 0.2 billion years. Planetary scale vertical and horizontal circulations of mantle currents took place, and angular momentum exchange was realized through the vertical component. The horizontal part of the mantle currents, near the bottom of the lithosphere, became a real force to drive continental split and plate drift. The acceleration and deceleration of the core compared with the mantle currents then caused different flow directions in the two hemispheres. When the inner core rotates faster from west to east, upper mantle currents will tend to flow westwards and towards the two poles. Surface lighter materials converged towards the two poles so that two continental polar crust caps appeared when the magma surface was cooling. This caused two original supercontinents to form about 4.54 billion years ago, while an original oceanic zone formed in the tropics. The uneven latitudinal variation of crustal thickness did lead to thermal differences within the mantle currents. This caused the core-magma angular momentum exchange. Deceleration of the core will cause two flow vectors, northwesterly in the Northern Hemisphere and southwesterly in the Southern Hemisphere. The history of plate drift is then driven by the motion of upper mantle currents. A distinct Equatorial Convergence Zone of magma flow which developed early in Earth’s history, gave way to the Intertropical Convergence Zone, serving as a border for the magma fluids and continents from the two hemispheres. A possible mechanism for the formation of the Himalayans is the maximum shear stress created by an orthogonal convergence or collision between two continental plates driven by the upper mantle currents.
基金Research supported by Sapienza University of Rome and Miur-Prin2011
文摘The possibility of a net rotation of the lithosphere with respect to the mantle is generally overlooked since it depends on the adopted mantle reference frames, which are arbitrary. We review the geological and geophysical signatures of plate boundaries, and show that they are markedly asymmetric worldwide. Then we compare available reference frames of plate motions relative to the mantle and discuss which is at best able to fit global tectonic data. Different assumptions about the depths of hotspot sources (below or within the asthenosphere, which decouples the lithosphere from the deep mantle) predict different rates of net rotation of the lithosphere relative to the mantle. The widely used no-net-rotation (NNR) reference frame, and low (〈0.2°-0.4°/Ma) net rotation rates (deep hotspots source) predict an average net rotation in which some plates move eastward relative to the mantle (e.g., Nazca). With fast (〉1°/Ma) net rotation (shallow hotspots source), all plates, albeit at different velocity, move westerly along a curved trajectory, with a tectonic equator tilted about 30° relative to the geographic equator. This is consistent with the observed global tectonic asymmetries.