本文采用依赖温度的黏度结构以及考虑海洋板块和大陆板块厚度差异等特征,以太平洋板块向欧亚板块会聚速率作为板块速度的主要约束,通过变化海沟后撤速度模型,数值模拟西太平洋板块向中国东北的俯冲过程.结果表明,要产生类似于中国东北...本文采用依赖温度的黏度结构以及考虑海洋板块和大陆板块厚度差异等特征,以太平洋板块向欧亚板块会聚速率作为板块速度的主要约束,通过变化海沟后撤速度模型,数值模拟西太平洋板块向中国东北的俯冲过程.结果表明,要产生类似于中国东北之下低角度的板片俯冲,海沟后撤是重要条件;而上下地幔黏度的较大差异是决定俯冲板片不穿透660 km相变而的决定因素;西太平洋板块向欧亚板块的俯冲应早于70 Ma B.P.,海沟后撤速度可能小于一些地质学家估计的45 mm/a,而且可能是分阶段变化的;速度场表明运动学模型的反过程:大陆岩石圈之下物质的不断水平向东的流动和推挤可能成为海沟后撤的力源之一,地幔物质的这种东向流动可能与印度板块挤压碰撞欧亚板块有关,沿欧亚板块东缘的扩张构造可能是太平洋欧亚板块运动和印度-欧亚板块运动的综合效应.展开更多
The marginal sea and back-arc basins in the Western Pacific Ocean have become the focus of tectonics due to their unique tectonic location.To understand the deep crustal structure in the back-arc region,we present a 5...The marginal sea and back-arc basins in the Western Pacific Ocean have become the focus of tectonics due to their unique tectonic location.To understand the deep crustal structure in the back-arc region,we present a 545-kmlong active-source ocean bottom seismometer(OBS)wide-angle reflection/refraction profile in the East China Sea.The P wave velocity model shows that the Moho depth rises significantly,from approximately 30 km in the East China Sea shelf to approximately 16 km in the axis of the Okinawa Trough.The lower crustal high-velocity zone(HVZ)in the southern Okinawa Trough,with V_(p) of 6.8-7.3 km/s,is a remarkable manifestation of the mantle material upwelling and accretion to the lower crust.This confirms that the lower crustal high-velocity mantle accretion is developed in the southern Okinawa Trough.During the process of back-arc extension,the crustal structure of the southern Okinawa Trough is completely invaded and penetrated by the upper mantle material in the axis region.In some areas of the southern central graben,the crust may has broken up and entered the initial stage of seafloor spreading.The discontinuous HVZs in the lower crust in the back-arc region also indicate the migration of spreading centers in the back-arc region since the Cenozoic.The asthenosphere material upwelling in the continent-ocean transition zone is constantly driving the lithosphere eastward for episodic extension,and is causing evident tectonic migration in the Western Pacific back-arc region.展开更多
文摘本文采用依赖温度的黏度结构以及考虑海洋板块和大陆板块厚度差异等特征,以太平洋板块向欧亚板块会聚速率作为板块速度的主要约束,通过变化海沟后撤速度模型,数值模拟西太平洋板块向中国东北的俯冲过程.结果表明,要产生类似于中国东北之下低角度的板片俯冲,海沟后撤是重要条件;而上下地幔黏度的较大差异是决定俯冲板片不穿透660 km相变而的决定因素;西太平洋板块向欧亚板块的俯冲应早于70 Ma B.P.,海沟后撤速度可能小于一些地质学家估计的45 mm/a,而且可能是分阶段变化的;速度场表明运动学模型的反过程:大陆岩石圈之下物质的不断水平向东的流动和推挤可能成为海沟后撤的力源之一,地幔物质的这种东向流动可能与印度板块挤压碰撞欧亚板块有关,沿欧亚板块东缘的扩张构造可能是太平洋欧亚板块运动和印度-欧亚板块运动的综合效应.
基金supported by the National Key Basic Research Program of China(Grant No.2013CB429701)the National Natural Science Foundation of China(Grant Nos.41606083,91958210,41606050 and 41210005)+1 种基金AoShan Technological Innovation Projects of National Laboratory for Marine Science and Technology(Qingdao)(2015ASKJ03)National Marine Geological Special Project(DD20190236,DD20190365,DD20190377)。
文摘The marginal sea and back-arc basins in the Western Pacific Ocean have become the focus of tectonics due to their unique tectonic location.To understand the deep crustal structure in the back-arc region,we present a 545-kmlong active-source ocean bottom seismometer(OBS)wide-angle reflection/refraction profile in the East China Sea.The P wave velocity model shows that the Moho depth rises significantly,from approximately 30 km in the East China Sea shelf to approximately 16 km in the axis of the Okinawa Trough.The lower crustal high-velocity zone(HVZ)in the southern Okinawa Trough,with V_(p) of 6.8-7.3 km/s,is a remarkable manifestation of the mantle material upwelling and accretion to the lower crust.This confirms that the lower crustal high-velocity mantle accretion is developed in the southern Okinawa Trough.During the process of back-arc extension,the crustal structure of the southern Okinawa Trough is completely invaded and penetrated by the upper mantle material in the axis region.In some areas of the southern central graben,the crust may has broken up and entered the initial stage of seafloor spreading.The discontinuous HVZs in the lower crust in the back-arc region also indicate the migration of spreading centers in the back-arc region since the Cenozoic.The asthenosphere material upwelling in the continent-ocean transition zone is constantly driving the lithosphere eastward for episodic extension,and is causing evident tectonic migration in the Western Pacific back-arc region.