To cherish the memory of the late Professor Duzheng YE on what would have been his 100 th birthday, and to celebrate his great accomplishment in opening a new era of Tibetan Plateau(TP) meteorology, this review pape...To cherish the memory of the late Professor Duzheng YE on what would have been his 100 th birthday, and to celebrate his great accomplishment in opening a new era of Tibetan Plateau(TP) meteorology, this review paper provides an assessment of the atmospheric heat source(AHS) over the TP from different data resources, including observations from local meteorological stations, satellite remote sensing data, and various reanalysis datasets. The uncertainty and applicability of these heat source data are evaluated. Analysis regarding the formation of the AHS over the TP demonstrates that it is not only the cause of the atmospheric circulation, but is also a result of that circulation. Based on numerical experiments, the review further demonstrates that land–sea thermal contrast is only one part of the monsoon story. The thermal forcing of the Tibetan–Iranian Plateau plays a significant role in generating the Asian summer monsoon(ASM), i.e., in addition to pumping water vapor from sea to land and from the lower to the upper troposphere, it also generates a subtropical monsoon–type meridional circulation subject to the angular momentum conservation, providing an ascending-air large-scale background for the development of the ASM.展开更多
By using a linear baroclinic model(LBM),this study investigates the different Rossby wave train(RWT)patterns associated with the Tibetan Plateau(TP)upper-atmospheric heat source(TPUHS)that is anomalously shallower and...By using a linear baroclinic model(LBM),this study investigates the different Rossby wave train(RWT)patterns associated with the Tibetan Plateau(TP)upper-atmospheric heat source(TPUHS)that is anomalously shallower and deeper in boreal summer.Observational results indicate the different RWT patterns between the developing and decaying periods of synoptic TPUHS events,when the anomalous TPUHS develops from a relatively shallower to a deeper TP heat source.Based on the different vertical heating profiles between these two periods in observation,this study forces the LBM with prescribed TPUHS profiles to mimic a shallower and deeper summer TP heat source.The results show that the atmospheric responses to a shallower and deeper TPUHS do exhibit different RWT patterns that largely resemble those in observation.Namely,corresponding RWT pattern to a shallower TPUHS stretches from the TP to the west coast of America,while that to a deeper TPUHS extends from the TP region to Alaska.展开更多
There are many types of atmospheric heat engines in land-air systems.The accurate definition,calculation and interpretation of the efficiency of atmospheric heat engines are key to understanding energy transfer and tr...There are many types of atmospheric heat engines in land-air systems.The accurate definition,calculation and interpretation of the efficiency of atmospheric heat engines are key to understanding energy transfer and transformation of landair systems.The atmosphere over the Qinghai-Tibet Plateau(QTP)in summer can be regarded as a positive heat engine.The study of the heat engine efficiency is helpful to better understand land-air interaction and thermal-dynamic processes on the QTP.It also provides a new perspective to explain the impact of the QTP on the climate of China,East Asia and even the world.In this paper,we used MOD08 and ERA5 reanalysis data to calculate the atmospheric heat engine efficiency,surface heat source and atmospheric heat source on the QTP in summer(May to September)from 2000 to 2020.The average atmospheric heat engine efficiency on the QTP in summer from 2000 to 2020 varies between 1.2%and 1.5%,which is less than 1.6%;the heat engine efficiency in summer is higher than that in June,July and August;the Qaidam Basin is the region with the highest atmospheric heat engine efficiency,followed by the western QTP.The mean surface heat source on the QTP in summer from 2000 to 2020 is 96.0 W m^(−2),the atmospheric heat source is 90.7 W m^(−2),and the release of precipitation condensation latent heat is the most important component of the atmospheric heat source on the QTP in summer.There is a strong and significant positive correlation between the atmospheric heat engine efficiency and the surface heat source on the QTP in summer.The precipitation condensation latent heat is the most important component of the atmospheric heat source in summer and can reflect the precipitation process.There is a strong and significant negative correlation between the atmospheric heat engine efficiency and the atmospheric heat source on the QTP in summer.展开更多
基金supported by the Key Research Program of Frontier Sciences of the Chinese Academy of Sciencesthe Major Research Plan of the National Natural Science Foundation of China(Grant Nos.91637312,91437219,91637208,and 41530426)the Special Program for Applied Research on Super Computation of the NSFC–Guangdong Joint Fund(second phase)(Grant No.U1501501)
文摘To cherish the memory of the late Professor Duzheng YE on what would have been his 100 th birthday, and to celebrate his great accomplishment in opening a new era of Tibetan Plateau(TP) meteorology, this review paper provides an assessment of the atmospheric heat source(AHS) over the TP from different data resources, including observations from local meteorological stations, satellite remote sensing data, and various reanalysis datasets. The uncertainty and applicability of these heat source data are evaluated. Analysis regarding the formation of the AHS over the TP demonstrates that it is not only the cause of the atmospheric circulation, but is also a result of that circulation. Based on numerical experiments, the review further demonstrates that land–sea thermal contrast is only one part of the monsoon story. The thermal forcing of the Tibetan–Iranian Plateau plays a significant role in generating the Asian summer monsoon(ASM), i.e., in addition to pumping water vapor from sea to land and from the lower to the upper troposphere, it also generates a subtropical monsoon–type meridional circulation subject to the angular momentum conservation, providing an ascending-air large-scale background for the development of the ASM.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences [grant number XDA17010105]the National Natural Science Foundation of China [grant numbers 91437105,41430533,and 41575041]the Key Research Program of Frontier Sciences [grant number QYZDY-SSW-DQC018]
文摘By using a linear baroclinic model(LBM),this study investigates the different Rossby wave train(RWT)patterns associated with the Tibetan Plateau(TP)upper-atmospheric heat source(TPUHS)that is anomalously shallower and deeper in boreal summer.Observational results indicate the different RWT patterns between the developing and decaying periods of synoptic TPUHS events,when the anomalous TPUHS develops from a relatively shallower to a deeper TP heat source.Based on the different vertical heating profiles between these two periods in observation,this study forces the LBM with prescribed TPUHS profiles to mimic a shallower and deeper summer TP heat source.The results show that the atmospheric responses to a shallower and deeper TPUHS do exhibit different RWT patterns that largely resemble those in observation.Namely,corresponding RWT pattern to a shallower TPUHS stretches from the TP to the west coast of America,while that to a deeper TPUHS extends from the TP region to Alaska.
基金This work was supported by the Second Tibetan Plateau Scientific Expedition and Research Program(Grant No.2019QZKK010303)the Numerical Simulation of the Effect of Soil Temperature on Precipitation Prediction(Grant No.QHMS2019015).
文摘There are many types of atmospheric heat engines in land-air systems.The accurate definition,calculation and interpretation of the efficiency of atmospheric heat engines are key to understanding energy transfer and transformation of landair systems.The atmosphere over the Qinghai-Tibet Plateau(QTP)in summer can be regarded as a positive heat engine.The study of the heat engine efficiency is helpful to better understand land-air interaction and thermal-dynamic processes on the QTP.It also provides a new perspective to explain the impact of the QTP on the climate of China,East Asia and even the world.In this paper,we used MOD08 and ERA5 reanalysis data to calculate the atmospheric heat engine efficiency,surface heat source and atmospheric heat source on the QTP in summer(May to September)from 2000 to 2020.The average atmospheric heat engine efficiency on the QTP in summer from 2000 to 2020 varies between 1.2%and 1.5%,which is less than 1.6%;the heat engine efficiency in summer is higher than that in June,July and August;the Qaidam Basin is the region with the highest atmospheric heat engine efficiency,followed by the western QTP.The mean surface heat source on the QTP in summer from 2000 to 2020 is 96.0 W m^(−2),the atmospheric heat source is 90.7 W m^(−2),and the release of precipitation condensation latent heat is the most important component of the atmospheric heat source on the QTP in summer.There is a strong and significant positive correlation between the atmospheric heat engine efficiency and the surface heat source on the QTP in summer.The precipitation condensation latent heat is the most important component of the atmospheric heat source in summer and can reflect the precipitation process.There is a strong and significant negative correlation between the atmospheric heat engine efficiency and the atmospheric heat source on the QTP in summer.