期刊文献+
共找到156篇文章
< 1 2 8 >
每页显示 20 50 100
Influence of Qinghai-Xizang Plateau snow cover on interannual variability of Western North Pacific tropical cyclone tracks
1
作者 Zhaohua WANG Dongliang ZHAO +1 位作者 Kejian WU Lian XIE 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第6期2060-2076,共17页
Track density function(TDF)was computed for all Western North Pacific tropical cyclones(WNP TCs)tracks from 1950 to 2018,and the TDFs were further investigated using principal component analysis(PCA)to analyze their i... Track density function(TDF)was computed for all Western North Pacific tropical cyclones(WNP TCs)tracks from 1950 to 2018,and the TDFs were further investigated using principal component analysis(PCA)to analyze their inter-annual spatial and temporal variability.Then,the relationships between each empirical orthogonal function(EOF)mode and the typhoon count,typhoon landfall count,track pattern,and the Qinghai-Xizang Plateau snow cover(QXPSC)were examined,and the possible physical mechanisms implied by the statistical relationship were explored.The results show the QXPSC significantly affected the surface-atmosphere heat exchange through snow cover(SC)level,then changed the East Asian summer monsoon regional circulation pattern,influenced the subtropical high-pressure system strength and location,and ultimately affected the WNP TCs track patterns and thus changed their landfall locations. 展开更多
关键词 tropical cyclone Qinghai-Xizang plateau snow cover track pattern landfall location
下载PDF
Interannual and Decadal Variations of Snow Cover overQinghai-Xizang Plateau and Their Relationships to Summer Monsoon Rainfall in China 被引量:53
2
作者 陈烈庭 吴仁广 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2000年第1期18-30,共13页
Interannual and decadal variations of winter snow cover over the Qinghai-Xizang Plateau (QXP) are analyzed by using monthly mean snow depth data set of 60 stations over QXP for the period of 1958 through 1992. It is f... Interannual and decadal variations of winter snow cover over the Qinghai-Xizang Plateau (QXP) are analyzed by using monthly mean snow depth data set of 60 stations over QXP for the period of 1958 through 1992. It is found that the winter snow cover over QXP bears a pronounced quasi-biennial oscillation, and it underwent an obvious decadal transition from a poor snow cover period to a rich snow cover period in the late 1970’s during the last 40 years. It is shown that the summer rainfall in the eastern China is closely associated with the winter snow cov-er over QXP not only in the interannual variation but also in the decadal variation. A clear relationship ex-ists in the quasi-biennial oscillation between the summer rainfall in the northern part of North China and the southern China and the winter snow cover over QXP. Furthermore, the summer rainfall in the four cli-mate divisions of Qinling-Daba Mountains, the Yangtze-Huaihe River Plain, the upper and lower reaches of the Yangtze River showed a remarkable transition from drought period to rainy period in the end of 1970’s, in good correspondence with the decadal transition of the winter snow cover over QXP. Key words Snow cover over Qinghai-Xizang Plateau - Summer monsoon rainfall in China - Interannual and decadal variations This study was supported by the National Key Programme for Developing Basic Sciences (G 1998040900 Part I). 展开更多
关键词 snow cover over Qinghai-Xizang plateau Summer monsoon rainfall in China Interannual and decadal variations
下载PDF
The Effects of Anomalous Snow Cover of the Tibetan Plateau on the Surface Heating 被引量:7
3
作者 李国平 卢敬华 +1 位作者 靳冰凌 布尼玛 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2001年第6期1207-1214,共8页
On the basis of snow data and AWS (Automatic Weather Station) data obtained from the Tibetan Plateau in recent years (1993 to 1999), the features of sensible heat, latent heat and net long-wave radiations are estimate... On the basis of snow data and AWS (Automatic Weather Station) data obtained from the Tibetan Plateau in recent years (1993 to 1999), the features of sensible heat, latent heat and net long-wave radiations are estimated, and their variations in more-snow year (1997/ 1998) and less-snow year (1996/ 1997) are analyzed comparatively. The relationships between snow cover of the Tibetan Plateau and plateau’s surface heating to the atmospheric heating are also discussed. The difference between more-snow and less-snow year in spring is remarkably larger than that in winter. Therefore, the effect of anomalous snow cover of the Tibetan Plateau in winter on the plateau heating appears more clearly in the following spring of anomalous snow cover. Key words Tibetan Plateau - Snow cover - Effects - Surface heat fluxes This research was supported by the National Key Programme for Developing Basic Sciences G1998040900 (I), National Natural Science Foundation of China (40075018) and Sichuan Youth Science and Technology Fund. 展开更多
关键词 Tibetan plateau snow cover EFFECTS Surface heat fluxes
下载PDF
The Summer Snow Cover Anomaly over the Tibetan Plateau and Its Association with Simultaneous Precipitation over the Mei-yu–Baiu region 被引量:15
4
作者 LIU Ge WU Renguang +1 位作者 ZHANG Yuanzhi NAN Sulan 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2014年第4期755-764,共10页
The summer snow anomalies over the Tibetan Plateau (TP) and their effects on climate variability are often overlooked,possibly due to the fact that some datasets cannot properly capture summer snow cover over high t... The summer snow anomalies over the Tibetan Plateau (TP) and their effects on climate variability are often overlooked,possibly due to the fact that some datasets cannot properly capture summer snow cover over high terrain.The satellite-derived Equal-Area Scalable Earth grid (EASE-grid) dataset shows that snow still exists in summer in the western part and along the southem flank of the TP.Analysis demonstrates that the summer snow cover area proportion (SCAP) over the TP has a significant positive correlation with simultaneous precipitation over the mei-yu-baiu (MB) region on the interannual time scale.The close relationship between the summer SCAP and summer precipitation over the MB region could not be simply considered as a simultaneous response to the Silk Road pattern and the SST anomalies in the tropical Indian Ocean and tropical central-eastern Pacific.The SCAP anomaly has an independent effect and may directly modulate the land surface heating and,consequently,vertical motion over the western TP,and concurrently induce anomalous vertical motion over the North Indian Ocean via a meridional vertical circulation.Through a zonal vertical circulation over the tropics and a Kelvin wave-type response,anomalous vertical motion over the North Indian Ocean may result in an anomalous high over the western North Pacific and modulate the convective activity in the western Pacific warm pool,which stimulates the East Asia-Pacific (EAP) pattern and eventually affects summer precipitation over the MB region. 展开更多
关键词 snow cover Tibetan plateau MEI-YU baiu PRECIPITATION
下载PDF
A Modeling Study of the Effects of Anomalous Snow Cover over the Tibetan Plateau upon the South Asian Summer Monsoon 被引量:10
5
作者 刘华强 孙照渤 +1 位作者 王举 闵锦忠 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2004年第6期964-975,共12页
The e?ect of anomalous snow cover over the Tibetan Plateau upon the South Asian summer monsoon is investigated by numerical simulations using the NCAR regional climate model (RegCM2) into which gravity wave ... The e?ect of anomalous snow cover over the Tibetan Plateau upon the South Asian summer monsoon is investigated by numerical simulations using the NCAR regional climate model (RegCM2) into which gravity wave drag has been introduced. The simulations adopt relatively realistic snow mass forcings based on Scanning Multi-channel Microwave Radiometer (SMMR) pentad snow depth data. The physical mechanism and spatial structure of the sensitivity of the South Asian early summer monsoon to snow cover anomaly over the Tibetan Plateau are revealed. The main results are summarized as follows. The heavier than normal snow cover over the Plateau can obviously reduce the shortwave radiation absorbed by surface through the albedo e?ect, which is compensated by weaker upward sensible heat ?ux associated with colder surface temperature, whereas the e?ects of snow melting and evaporation are relatively smaller. The anomalies of surface heat ?uxes can last until June and become unobvious in July. The decrease of the Plateau surface temperature caused by heavier snow cover reaches its maximum value from late April to early May. The atmospheric cooling in the mid-upper troposphere over the Plateau and its surrounding areas is most obvious in May and can keep a fairly strong intensity in June. In contrast, there is warming to the south of the Plateau in the mid-lower troposphere from April to June with a maximum value in May. The heavier snow cover over the Plateau can reduce the intensity of the South Asian summer monsoon and rainfall to some extent, but this in?uence is only obvious in early summer and almost disappears in later stages. 展开更多
关键词 snow cover Tibetan plateau South Asian monsoon numerical simulation
下载PDF
Characteristics of abrupt changes of snow cover and seasonal freeze-thaw layer in the Tibetan Plateau and their impacts on summer precipitation in China 被引量:1
6
作者 Rong Gao HaiLing Zhong +1 位作者 WenJie Dong ZhiGang Wei 《Research in Cold and Arid Regions》 2011年第1期24-30,共7页
In this paper, a variation series of snow cover and seasonal freeze-thaw layer from 1965 to 2004 on the Tibetan Plateau has been established by using the observation data from meteorological stations. The sliding T-te... In this paper, a variation series of snow cover and seasonal freeze-thaw layer from 1965 to 2004 on the Tibetan Plateau has been established by using the observation data from meteorological stations. The sliding T-test, M-K test and B-G algorithm are used to verify abrupt changes of snow cover and seasonal freeze-thaw layer in the Tibetan plateau. The results show that the snow cover has not undergone an abrupt change, but the seasonal freeze-thaw layer obviously witnessed a rapid degradation in 1987, with the frozen soil depth being reduced by about 15 cm. It is also found that when there ~s less snow in the plateau region, precipitation in South China and Southwest China increases. But when the frozen soil is deep, precipitation in most of China apparently decreases. Both snow cover and seasonal freeze-thaw layer on the plateau can be used to predict the summer precipitation in China. However, if the impacts of snow cover and seasonal freeze-thaw layer are used at the same time, the predictability of summer precipitation can be significantly improved. The significant correlation zone of snow is located in middle reaches of the Yangtze River covering the Hexi Corridor and northeastern Inner Mongolia, and the seasonal freeze-thaw layer exists in Mt. Nanling, northern Shannxi and northwestern part of North China. The significant correlation zone of simultaneous impacts of snow cover and seasonal freeze-thaw layer is larger than that of either snow cover or seasonal freeze-thaw layer. There are three significant correlation zones extending from north to south: the north zone spreads from Mr. Daxinganling to the Hexi Corridor, crossing northern Mt. Taihang and northern Shannxi; the central zone covers middle and lower reaches of the Yangtze River; and the south zone extends from Mt. Wuyi to Yunnan and Guizhou Plateau through Mt. Nanling. 展开更多
关键词 Tibetan plateau snow cover seasonal freeze-thaw layer PRECIPITATION
下载PDF
A new MODIS daily cloud free snow cover mapping algorithm on the Tibetan Plateau 被引量:7
7
作者 XiaoDong Huang XiaoHua Hao +2 位作者 QiSheng Feng Wei Wang TianGang Liang 《Research in Cold and Arid Regions》 CSCD 2014年第2期116-123,共8页
Because of similar reflective characteristics of snow and cloud, the weather status seriously affects snow monitoring using optical remote sensing data. Cloud amount analysis during 2010 to 2011 snow seasons shows tha... Because of similar reflective characteristics of snow and cloud, the weather status seriously affects snow monitoring using optical remote sensing data. Cloud amount analysis during 2010 to 2011 snow seasons shows that cloud cover is the major limitation for snow cover monitoring using MOD10A1 and MYD10A1. By use of MODIS daily snow cover products and AMSR-E snow wa- ter equivalent products (SWE), several cloud elimination methods were integrated to produce a new daily cloud flee snow cover product, and information of snow depth from 85 climate stations in Tibetan Plateau area (TP) were used to validate the accuracy of the new composite snow cover product. The results indicate that snow classification accuracy of the new daily snow cover product reaches 91.7% when snow depth is over 3 cm. This suggests that the new daily snow cover mapping algorithm is suitable for monitoring snow cover dynamic changes in TP. 展开更多
关键词 MODIS snow cover cloud contamination elimination Tibetan plateau
下载PDF
Impacts of snow cover and frozen soil in the Tibetan Plateau on summer precipitation in China
8
作者 Rong Gao HaiLing Zhong +1 位作者 WenJie Dong ZhiGang Wei 《Research in Cold and Arid Regions》 2011年第6期491-497,共7页
This paper presents an analysis of the mechanisms and impacts of snow cover and frozen soil in the Tibetan Plateau on the sum- mer precipitation in China, using RegCM3 version 3.1 model simulations. Comparisons of sim... This paper presents an analysis of the mechanisms and impacts of snow cover and frozen soil in the Tibetan Plateau on the sum- mer precipitation in China, using RegCM3 version 3.1 model simulations. Comparisons of simulations vs. observations show that RegCM3 well captures these impacts. Results indicate that in a more-snow year with deep frozen soil there will be more precipita- tion in the Yangtze River Basin and central Northwest China, western Inner Mongolia, and Xinjiang, but less precipitation in Northeast China, North China, South China, and most of Southwest China. In a less-snow year with deep frozen soil, however, there will be more precipitation in Northeast China, North China, and southern South China, but less precipitation in the Yangtze River Basin and in northern South China. Such differences may be attributed to different combination patterns of melting snow and thawing frozen soil on the Plateau, which may change soil moisture as well as cause differences in energy absorption in the phase change processes of snow cover and frozen soil. These factors may produce more surface sensible heat in more-snow years when the fi'ozen soil is deep than when the frozen soil is shallow. The higher surface sensible heat may lead to a stronger updraft over the Plateau, eventually contributing to a stronger South Asia High and West Pacific Subtropical High. Due to different values of the wind fields at 850 hPa, a convergence zone will form over the Yangtze River Basin, which may produce more summer pre- cipitation in the basin area but less precipitation in North China and South China. However, because soil moisture depends on ice content, in less-snow years with deep frozen soil, the soil moisture will be higher. The combination of higher frozen soil moisture with latent heat absorption in the phase change process may generate less surface sensible heat and consequently a weaker updraft motion over the Plateau. As a result, both the South Asia High and the West Pacific Subtropical High will be weaker, hence caus- ing more summer precipitation in northern China but less in southem China. 展开更多
关键词 Tibetan plateau snow cover fi'ozen soil summer precipitation
下载PDF
NUMERICAL EXPERIMENTS ON THE EFFECT OF QINGHAIXIZANG PLATEAU SNOW COVER ON SUMMER MONSOON FORMATION 被引量:1
9
作者 张正秋 李维亮 陈隆勋 《Acta meteorologica Sinica》 SCIE 1991年第4期442-455,共14页
The calculating schemes of underlying surface processes in the model described by Li et al.(1989) are modified with inclusion of simple land surface processes and oceanic mixed layer processes, then a simulation on th... The calculating schemes of underlying surface processes in the model described by Li et al.(1989) are modified with inclusion of simple land surface processes and oceanic mixed layer processes, then a simulation on the zonal wind along 90°E from the Northern to the Southern Hemisphere with moun- tains is performed.Comparisons of the results and the observations show that the modified model not only has an excellent stability in calculation but also can better display the seasonal change of the wind field,the ability of the present model is improved as compared with that of the previous one. Based on the simulations,the authors investigate the effects of Qinghai-Xizang Plateau snow cover on the formation of South Asian monsoon by thickcning the snow depth and by increasing the snow albedo.The main results arc as follows:The summer meridional circulation over the south of the Plateau and its vicinity is weakeued,and the precipitation reduced.However,over the northern tropics,the circulation is enhanced, and the ecipitation is increased,and the land and the air above it become warmer,the tropical easterly jet is weakened. 展开更多
关键词 underlying surface process MONSOON Qinghai-Xizang plateau snow cover sensitivity experiment
全文增补中
RESPONSE OF TIBETAN SNOW COVER TO GLOBAL WARMING
10
作者 Li Peiji(Lanchou Institute of Gaciology and Geocryology, CAS, Lanzhou 730000)People’s Ropublic of China 《Journal of Geographical Sciences》 SCIE CSCD 1995年第3期69-76,共8页
Daily snow depth records at 60 primary dimatc statons over the Tibetan Plateau for the penod 1957-1992 are used as basis for point and areal hme series developmat. A statistical lnodel consistng of a trend plus serial... Daily snow depth records at 60 primary dimatc statons over the Tibetan Plateau for the penod 1957-1992 are used as basis for point and areal hme series developmat. A statistical lnodel consistng of a trend plus serially correated noise is fitted to the data to test for trend in time series of snow cover. Restilts of three trend estimatos based on difference of average, least squares fitting and slope AN (1) process imply that the increase in annual snow depth is a systematic developlnent as evidenced by the presence of a dotenniruStic trend. The spatial pattem of trend estimates convinced that the increase trends are almost onAnpresent over the wtire plateau. Further exandnation of interannual variation of snow cover over the Tiban Plateau and suffoce air tenrperature in winter over the nodriem hemisphere reveals a posihve correlation of +0.21 betWeen the two time series for period of 1957-1992. 展开更多
关键词 snow cover global warming Tibetan plateau
下载PDF
Distribution of winter-spring snow over the Tibetan Plateau and its relationship with summer precipitationin Yangtze River
11
作者 ZhuoGa TaoChen +2 位作者 LaBa PuBuCiRen BaSang 《Research in Cold and Arid Regions》 CSCD 2017年第1期20-28,共9页
The distribution of winter-spring snow cover over the Tibetan Plateau (TP) and its relationship with summer precipitation in the middle and lower reaches of Yangtze River Valley (MLYRV) during 2003-2013 have been ... The distribution of winter-spring snow cover over the Tibetan Plateau (TP) and its relationship with summer precipitation in the middle and lower reaches of Yangtze River Valley (MLYRV) during 2003-2013 have been investigated with the moderate-resolution imaging spectrometer (MODIS) Terra data (MOD10A2) and precipitation observations. Results show that snow cover percentage (SCP) remains approximately 20% in winter and spring then tails off to below 5% with warmer temperature and snow melt in summer. The lower and highest percentages present a declining tendency while the middle SCP exhibits an opposite variation. The maximum value appears from the middle of October to March and the minimum emerges from July to August. The annual and winter-spring SCPs present a decreasing tendency. Snow cover is mainly situated in the periphery of the plateau and mountainous regions, and less snow in the interior of the plateau, basin and valley areas in view of snow cover frequency (SCF) over the TP. Whatever annual or winter-spring snow cover, they all have remarkable declining tendency during 2003-2013, and annual snow cover presents a decreasing trend in the interior of the TP and increasing trend in the periphery of the TP. Hie multi-year averaged eight-day SCP is negatively related to mean precipitation in the MLYRV. Spring SCP is negatively related to summer precipitation while winter SCP is positively related to summer precipitation in most parts of the MLYRV. Hence, the influence of winter snow cover on precipitation is much more significant than that in spring on the basis of correlation analysis. The oscillation of SCF from southeast to northwest over the TP corresponds well to the beginning,development and cessation of the rain belt in eastern China. 展开更多
关键词 winter-spring snow cover Tibetan plateau RELATIONSHIP summer precipitation Yangtze River Valley MODIS Reprojection Tool
下载PDF
Trend of snow cover fraction over East Asia in the 21st century under different scenarios
12
作者 Fang Wang YiHui Ding 《Research in Cold and Arid Regions》 2012年第2期107-114,共8页
Using the snow cover fi'action (SNC) output from eight WCRP CMIP3 climate models under SRES A2, A1B, and B1 scenarios, the future trend of SNC over East Asia is analyzed. Results show that SNC is likely to decrease... Using the snow cover fi'action (SNC) output from eight WCRP CMIP3 climate models under SRES A2, A1B, and B1 scenarios, the future trend of SNC over East Asia is analyzed. Results show that SNC is likely to decrease in East Asia, with the fastest decrease in spring, then winter and autumn, and the slowest in summer, In spring and winter the SNC decreases faster in the Qinghai-Xizang Plateau than in northern East Asia, while in autumn there is little difference between them. Among the various scenarios, SRES A2 has the largest decrease trend, then A1B, and B1 has the smallest trend. The decrease in SNC is mainly caused by the changes in surface air temperature and snowfall, which contribute differently to the SNC trends in different regions and seasons. 展开更多
关键词 snow cover future trend Qinghai-Xizang plateau East Asia
下载PDF
Interannual Variability of Atmospheric Heat Source/ Sink over the Qinghai-Xizang (Tibetan) Plateau and its Relation to Circulation 被引量:26
13
作者 赵平 陈隆勋 +1 位作者 Zhao Ping Chen Longxun 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2001年第1期106-116,共11页
Based on the 1961-1995 atmospheric apparent heat source/sink and the 1961-1990 snow-cover days and depth over the Qinghai-Xizang Plateau (QXP) and the 1961-1995 reanalysis data of NCEP/NCAR and the 1975-1994 OLR data,... Based on the 1961-1995 atmospheric apparent heat source/sink and the 1961-1990 snow-cover days and depth over the Qinghai-Xizang Plateau (QXP) and the 1961-1995 reanalysis data of NCEP/NCAR and the 1975-1994 OLR data, this paper discusses the interannual variability of the heat regime and its relation to atmospheric circulation It is shown that the interannual variability is pronounced, with maximal variability in spring and autumn, and the variability is heterogeneous horizontally. In the years with the weak (or strong) winter cold source, the deep trough over East Asia is to the east (or west) of its normal, which corresponds to strong (or weak) winter monsoon in East Asia. In the years with the strong (or weak) sum mer heat source, there exists an anomalous cyclone (or anticyclone) in the middle and lower troposphere over the QXP and ifs neighborhood and anomalous southwest (or northeast) winds over the Yangtze River valley of China, corresponding to strong (or weak) summer monsoon in East Asia. The summer heat source of the QXP is related to the intensity and position of the South Asia high. The QXP snow cover condition of April has a close relation to the heating intensity of summer. There is a remarkable negative correlation between the summer heat source of the QXP and the convection over the southeastern QXP, the Bay of Bengal, the Indo-China Peninsula, the southeastern Asia, the southwest part of China and the lower reaches of the Yangtze River and in the area from the Yellow Sea of China to the Sea of Japan. 展开更多
关键词 Qinghai-Xizang plateau apparent heat source/sink snow cover OLR
下载PDF
CMIP6耦合模式对青藏高原积雪的未来预估 被引量:1
14
作者 陈涛 高歌 +1 位作者 杜晓辉 陈华 《地理科学》 CSSCI CSCD 北大核心 2024年第5期901-910,共10页
基于第六次国际耦合模式比较计划(CMIP6)的历史模拟试验以及情景预估试验数据,分析了21世纪中(2035—2064年)、后期(2070—2099年)青藏高原积雪相对于参考期(1985—2014年)的变化。结果表明:相对于参考期,21世纪中、后期青藏高原平均年... 基于第六次国际耦合模式比较计划(CMIP6)的历史模拟试验以及情景预估试验数据,分析了21世纪中(2035—2064年)、后期(2070—2099年)青藏高原积雪相对于参考期(1985—2014年)的变化。结果表明:相对于参考期,21世纪中、后期青藏高原平均年积雪日数、平均积雪期均表现为减少,减少幅度总体随着人为辐射强迫的增加而加大;除低强迫情景外,21世纪后期的减少幅度均大于21世纪中期;空间上总体表现为青藏高原东南部的减少幅度大于西北部。21世纪中、后期青藏高原积雪初日均表现为推迟、积雪终日均表现为提前,积雪初日推迟天数是积雪终日提前天数的1.5~2.0倍;人为辐射强迫越高,积雪初(终)日推迟(提前)天数越多;相同情景下21世纪后期积雪初(终)日推迟(提前)天数均多于21世纪中期。降雪(气温)与年积雪日数呈正(负)相关;随着人为辐射强迫的增加,降雪对年积雪日数的相对贡献率总体呈增加趋势;空间特征表现为降雪(气温)对青藏高原南部和北部(东部和西部)的年积雪日数的相对贡献更大。7—12月降雪的减少幅度大于1—6月,这可能是积雪初日推迟天数多于积雪终日提前天数的重要原因。不同情景下青藏高原未来积雪变化差异明显,由此可见,控制温室气体排放对减缓未来青藏高原积雪的减少速率至关重要。 展开更多
关键词 青藏高原 CMIP6 积雪日数 积雪期 气温降雪贡献率
下载PDF
青藏高原冬春多源积雪资料年际变化尺度上的适用性分析 被引量:1
15
作者 李延 赵瑞瑜 陈斌 《高原气象》 CSCD 北大核心 2024年第2期277-292,共16页
青藏高原冬春积雪变化具有显著的年际变化特征,其对中国东部夏季降水预测具有一定指示意义。由于特殊的复杂地形,青藏高原气象站点分布稀疏且不均匀,再分析数据和卫星数据提供的高原积雪资料的不确定性是影响和制约积雪变化及其天气气... 青藏高原冬春积雪变化具有显著的年际变化特征,其对中国东部夏季降水预测具有一定指示意义。由于特殊的复杂地形,青藏高原气象站点分布稀疏且不均匀,再分析数据和卫星数据提供的高原积雪资料的不确定性是影响和制约积雪变化及其天气气候效应研究中的一个关键问题。本文基于青藏高原台站观测、再分析(ERA5和NOAA-V3)和卫星反演(MODIS雪盖以及IMS雪盖)的多源积雪资料,采用偏差分析、均方根误差以及相关分析等多元统计方法重点检验了多源高原积雪数据在描述积雪年际变化特征方面的不确定性。通过比较不同积雪资料的时空分布和变化特征,以期提升多源高原积雪资料适用性的认知,并为相关研究提供有意义的参考。分析结果表明:(1)就再分析数据给出的积雪资料而言,ERA5雪深资料相较NOAA-V3雪深,对高原站点观测雪深的描述效果更好。除了高原中东部分站点外,ERA5雪深数据的平均偏差和平均均方根误差均较小,而NOAA-V3雪深数据的平均偏差和均方根误差在整个高原范围内均存在一定程度的高估;(2)再分析(ERA5和NOAA-V3)和卫星反演(MODIS雪盖以及IMS雪盖)积雪数据和高原站点雪深均在年际变化特征上具有较好的一致性;其中ERA5再分析积雪数据与高原站点观测雪深数据在长期趋势上更为类似;另外,北半球雪盖与站点观测雪深的年代际变化趋势更加类似;(3)再分析资料(ERA5、NOAA-V3)的雪深和雪盖在高原的分布存在空间差异性,其中NOAA-V3在多雪年和少雪年的大值区都位于高原南部、北部边缘以及高原中东部,而ERA5的大值区主要分布在高原的中东部、西部以及南部边缘。然而,每种再分析数据各自的雪深和雪盖之间差异较小,且积雪异常年份的差值分布较为一致,无论是雪深还是雪盖,正异常区都位于高原中部、西部和南部边缘,负异常区则都在高原北部;(4)三种卫星的雪盖在多雪年大值区都位于高原中东部、南部以及西部地区。不同卫星数据在积雪异常增多年份雪盖的差值分布也较为一致,但再分析资料体现出的高原北部边缘的负异常并未在卫星雪盖资料上体现出来,此结果可能与卫星反演积雪数据的涵盖时间短以及处理方式不同有关。 展开更多
关键词 青藏高原 积雪 年际变化
下载PDF
青藏高原地区积雪与雪线高度时空变化研究 被引量:1
16
作者 刘小妮 莫李娟 +4 位作者 辛昱昊 陈松峰 赵雯颉 吴金雨 鞠琴 《华北水利水电大学学报(自然科学版)》 北大核心 2024年第2期48-58,共11页
积雪对气候变化具有高度敏感性,研究积雪变化对区域水循环及生态环境演变具有重要意义。基于遥感数据和河流水系分布情况,将青藏高原划分为12个子流域,分析了青藏高原及其子流域的积雪深度、积雪覆盖率、雪线高度的时空变化特征。结果表... 积雪对气候变化具有高度敏感性,研究积雪变化对区域水循环及生态环境演变具有重要意义。基于遥感数据和河流水系分布情况,将青藏高原划分为12个子流域,分析了青藏高原及其子流域的积雪深度、积雪覆盖率、雪线高度的时空变化特征。结果表明:①1979—2020年青藏高原积雪深度呈明显降低趋势,空间上积雪深度由中心区域向四周递增,阿姆河流域多年平均积雪深度最大,印度河流域的次之。②2000-2015年青藏高原多年平均积雪覆盖率为29.66%,呈平缓的下降趋势,印度河流域的积雪覆盖率最大,高达39.83%,塔里木河的次之。③青藏高原雪线高度的变化范围为[4700,5000]m,夏季的雪线高度整体偏高,在8月达到最大值;各子流域雪线高度由大到小的排序依次为雅鲁藏布江流域、印度河流域、河西流域、恒河流域、长江流域、怒江流域、阿姆河流域、塔里木河流域、柴达木河流域、内河流域、黄河流域、澜沧江流域。研究结果对寒区水资源管理和生态环境可持续发展具有重要意义。 展开更多
关键词 积雪深度 积雪覆盖率 雪线高度 时空变化 青藏高原
下载PDF
Role of ENSO in the interannual relationship between Tibetan Plateau winter snow cover and Northwest Pacific tropical cyclone genesis frequency 被引量:6
17
作者 ZHAN RuiFen DING YiHui +1 位作者 WU LiGuang LEI XiaoTu 《Science China Earth Sciences》 SCIE EI CAS CSCD 2016年第10期2009-2021,共13页
Previous studies have revealed a significantly negative correlation between prior winter snow cover over the Tibetan Plateau (TPSC) and tropical cyclone genesis frequency (TCF) over the western North Pacific (WNP... Previous studies have revealed a significantly negative correlation between prior winter snow cover over the Tibetan Plateau (TPSC) and tropical cyclone genesis frequency (TCF) over the western North Pacific (WNP) in the following typhoon season. This study revisited this relationship based on long-term observational data. The results showed that the interannual correlation between TCF over the WNP and TPSC experienced a shift in the early 1990s. This correlation is significant during only 1993-2012 and is considerably weak during 1976-1992. The possible reasons causing the shift were examined further, and the results demonstrated that the central Pacific (CP) E1 Nifio-Southern Oscillation (ENSO) has played a vital role in intensifying the interannual relationship between TCF over the WNP and TPSC since the early 1990s. During 1993-2012, TPSC was negatively related to CP ENSO. When TPSC was higher than (lower than) normal, CP ENSO was often in its cold (warm) phase. Such a combination remarkably enhances the relationship of TPSC with the zonal land-sea thermal difference and thus with the summer monsoon over the WNE Additionally, it enhances the modulation of TPSC on the dynamical environments controlling TCF. As a result, the linkage between TPSC and TCF was significantly strengthened in this period. In sharp contrast, due to the weak relationship between TPSC and ENSO followed by the weak modulation of TPSC on the summer monsoon over the WNP and the dynamical environment during 1976-1992, the linkage between TPSC and TCF was weak during this time period. The results from additional dynamical diagnostic analyses further showed that during 1993-2012 CP ENSO modulated the barotropic energy conversion of zonal winds over the WNP, contributing to the intensified relationship between TPSC and TCF. These results will improve seasonal forecasting of tropical cyclone activity over the WNP. 展开更多
关键词 Western North Pacific Tropical cyclone snow cover over the Tibetan plateau ENSO Interdecadal shift
原文传递
青藏高原雪盖次季节变率的季节进程
18
作者 李晓琳 《高原山地气象研究》 2024年第3期120-128,共9页
利用1998—2020年交互式多传感器雪冰制图系统雪盖资料、ERA-Interim再分析资料的近地层气温数据和美国气候预测中心提供的格点降水资料,研究了青藏高原雪盖次季节变率的变化特征及其与气温和降水的关系。结果表明:青藏高原积雪覆盖率... 利用1998—2020年交互式多传感器雪冰制图系统雪盖资料、ERA-Interim再分析资料的近地层气温数据和美国气候预测中心提供的格点降水资料,研究了青藏高原雪盖次季节变率的变化特征及其与气温和降水的关系。结果表明:青藏高原积雪覆盖率随季节变化较为明显,冬季积雪覆盖率最高,春季、秋季次之,夏季最小;雪盖季节内变化进程为1月活跃区域达到最大,此后逐步缩小,夏季最小,春季、秋季为过渡季节;青藏高原平均气温年内差值约为20℃,1月平均气温最低,且呈现南高北低的分布特征;气温对于青藏高原雪盖分布的影响较大,气温变化标准差大的时期,雪盖次季节变率也对应较大,且在空间分布上两者也较为类似;降水对青藏高原雪盖次季节变化的影响较小,二者没有明显的相关关系。 展开更多
关键词 青藏高原 雪盖 次季节 气温 降水
下载PDF
2022年5月江西省降水量气候趋势预测评估分析
19
作者 刘雅楠 吴琼 李勇 《气象与环境学报》 2024年第4期37-45,共9页
选用地面观测、NCEP再分析等资料,应用青藏高原积雪面积距平指数和大气环流指数,对比实况与气候动力模式结果,对2022年5月江西省降水量气候预测进行评估,并分析预测信号及其应用情况。结果表明:2022年5月气候动力模式“江西省南部降水... 选用地面观测、NCEP再分析等资料,应用青藏高原积雪面积距平指数和大气环流指数,对比实况与气候动力模式结果,对2022年5月江西省降水量气候预测进行评估,并分析预测信号及其应用情况。结果表明:2022年5月气候动力模式“江西省南部降水偏多”的总体降水气候特征预测较为准确,且“江西省存在降水集中期,部分地区有洪涝发生”的预测与实况相一致,5月降水过程的预报基本准确,但江西省北部以及中部地区的旱情预报等级偏小。前期预测综合了拉尼娜事件、前一年冬季冬青藏高原积雪异常偏多和印度洋海温变化等多个预测信号对2022年5月江西省降水量气候趋势的影响,但低估了拉尼娜事件对该月江西省降水的影响,高估了高原积雪异常偏多对江西北部降水的影响,导致出现预测偏差。 展开更多
关键词 拉尼娜 青藏高原积雪 印度洋暖海温
下载PDF
Decadal Relationship Between Atmospheric Heat Source and Winter-Spring Snow Cover over the Tibetan Plateau and Rainfall in East China
20
作者 朱玉祥 丁一汇 徐怀刚 《Acta meteorologica Sinica》 SCIE 2008年第3期303-316,共14页
By using a reverse computation method and the NCEP/NCAR daily reanalysis data from 1960 to 2004, the atmospheric heat source (AHS) was calculated and analyzed. The results show that AHS over the Tibetan Plateau (TP... By using a reverse computation method and the NCEP/NCAR daily reanalysis data from 1960 to 2004, the atmospheric heat source (AHS) was calculated and analyzed. The results show that AHS over the Tibetan Plateau (TP) and its neighboring areas takes on a persistent downtrend in spring and summer during the foregone 50 years, especially the latest 20 years. Snow depth at 50 stations over the TP in winter and spring presents an increase, especially the spring snow depth exhibits a sharp increase in the late 1970s. A close negative correlation exists between snow cover and AHS over the TP and its neighboring areas, as revealed by an SVD analysis, namely if there is more snow over the TP in winter and spring, then the weaker AHS would appear over the TP in spring and summer. The SVD analysis between AHS over the TP in spring and summer and rainfall at 160 stations indicates that the former has a negative correlation with summer precipitation in the middle and lower reaches of the Yangtze River, and a positive correlation with that in South China and North China. The SVD analysis of both snow cover over the TP in winter and spring and rainfall at the same 160 stations indicates that the former has a marked positive correlation with precipitation in the middle and lower reaches of the Yangtze River, and a reversed correlation in South China and North China. On the decadal scale, the AHS and winter and spring snow cover over the TP have a close correlation with the decadal precipitation pattern shift (southern flood and northern drought) in East China. The mechanism on how the AHS over the TP influences rainfall in East China is discussed. The weakening of AHS over the TP in spring and summer reduces the thermodynamic difference between ocean and continent, leading to a weaker East Asian summer monsoon, which brings more water vapor to the Yangtze River Valley and less water vapor to North China. Meanwhile, the weakening of AHS over the TP renders the position of the subtropical high further westward and the rain belt lasting longer in the Yangtze River Valley, which causes more rain there and less rain in North China, thus showing the pattern of "southern flood and northern drought" in the latest 20 years. It is inferred that the increase of snow cover over the TP brings about the reduction of surface temperature and then surface heat source, leading eventually to the weakening of AHS there. 展开更多
关键词 the atmospheric heat source (AHS) Tibetan plateau MONSOON southern flood and northern drought snow depth snow cover
原文传递
上一页 1 2 8 下一页 到第
使用帮助 返回顶部