BACKGROUND: Vascular endothelial growth factor (VEGF) induces bone marrow-derived mesenchymal stem cell (BMSC) differentiation into vascular endothelial-like cells and promotes BMSC migration toward gliomas. Howe...BACKGROUND: Vascular endothelial growth factor (VEGF) induces bone marrow-derived mesenchymal stem cell (BMSC) differentiation into vascular endothelial-like cells and promotes BMSC migration toward gliomas. However, the molecular mechanisms by which VEGF induces BMSC differentiation and migration remain poorly understood. OBJECTIVE; To investigate the role of platelet-derived growth factor (PDGF) receptor (PDGFR) in BMSC differentiation and migration induced by VEGE DESIGN, TIME AND SETTING: A parallel, controlled, in vitro experiment was performed at the Molecular Neurobiology & Neural Regeneration and Repairing Laboratory, Anhui Provincial Hospital of Anhui Medical University, China from June 2008 to March 2009. MATERIALS: U87 glioma cells were purchased from Shanghai Institutes for Biological Sciences; mouse anti-human PDGFR and VEGF receptor (VEGFR) monoclonal antibodies were purchased from Peprotech, USA. METHODS: Isolated BMSCs were precultured with neutralizing antibody for VEGFR-1, VEGFR-2, PDGFR-α, and PDGFR-β to block biological activity of related receptors, followed by induced differentiation with 50μg/L VEGF. BMSCs induced with 50μg/L VEGF alone served as the VEGF-induced group. The control group remained untreated. MAIN OUTCOME MEASURES: Cell surface markers were identified by flow cytometry; BMSC surface cytokine receptor expression was detected by reverse transcription-polymerase chain reaction; the Transwell model was used to observe cell migration. RESULTS: After blocking the PDGFR, VEGF did not induce BMSC cell surface marker CD-31 or von Willebrand factor (vWF) expression. However, inhibition with VEGF receptor blocking agents, VEGF induced BMSCs to express CD-31 and vWE Following inhibition of the PDGFR, the number of cells migrating through the polycarbonate membrane Transwell chamber was decreased, as well as the number of BMSCs migrating to glioma cells. However, through the use of VEGF receptor blocking agents, the number of migrating cells remained unchanged. VEGF preculture increased the number of BMSCs migrating to gliomas. CONCLUSION: VEGF interacts with PDGFRs on the BMSC surface to attract BMSC directional migration and induce BMSC differentiation. The VEGF/PDGFR pathway participates in BMSC directional migration to glioma. VEGF pretreatment increased efficiency of BMSC migration to glioma.展开更多
Metastasis represents by far the most feared complication of prostate carcinoma and is the main cause of death for patients.The skeleton is frequently targeted by disseminated cancer cells and represents the sole site...Metastasis represents by far the most feared complication of prostate carcinoma and is the main cause of death for patients.The skeleton is frequently targeted by disseminated cancer cells and represents the sole site of spread in more than 80% of prostate cancer cases.Compatibility between select malignant phenotypes and the microenvironment of colonized tissues is broadly recognized as the culprit for the organ-tropism of cancer cells.Here,we review our recent studies showing that the expression of platelet-derived growth factor receptor alpha(PDGFR a) supports the survival and growth of prostate cancer cells in the skeleton and that the soluble fraction of bone marrow activates PDGFR a in a ligand-independent fashion.Finally,we offer pre-clinical evidence that this receptor is a viable target for therapy.展开更多
AIM: To investigate whether the expression of platelet-derived growth factor receptor-α-positive (PDGFRα<sup>+</sup>)-cells is altered in Hirschsprung’s disease (HD).MET...AIM: To investigate whether the expression of platelet-derived growth factor receptor-α-positive (PDGFRα<sup>+</sup>)-cells is altered in Hirschsprung’s disease (HD).METHODS: HD tissue specimens (n = 10) were collected at the time of pull-through surgery, while colonic control samples were obtained at the time of colostomy closure in patients with imperforate anus (n = 10). Immunolabelling of PDGFRα<sup>+</sup>-cells was visualized using confocal microscopy to assess the distribution of these cells, while Western blot analysis was undertaken to quantify PDGFRα protein expression.RESULTS: Confocal microscopy revealed PDGFRα<sup>+</sup>-cells within the mucosa, myenteric plexus and smooth muscle in normal controls, with a marked reduction in PDGFRα<sup>+</sup>-cells in the HD specimens. Western blotting revealed high levels of PDGFRα protein expression in normal controls, while there was a striking decrease in PDGFRα protein expression in the HD colon.CONCLUSION: These findings suggest that the altered distribution of PDGFRα<sup>+</sup>-cells in both the aganglionic and ganglionic HD bowel may contribute to the motility dysfunction in HD.展开更多
BACKGROUND Gastrointestinal stromal tumors(GISTs) associated with neurofibromatosis are uncommon compared to their gastrointestinal counterparts. Patients with neurofibromatosis type 1(NF-1) have an increased risk of ...BACKGROUND Gastrointestinal stromal tumors(GISTs) associated with neurofibromatosis are uncommon compared to their gastrointestinal counterparts. Patients with neurofibromatosis type 1(NF-1) have an increased risk of developing gastrointestinal tumors, including rare types such as GIST.CASE SUMMARY A 60-year-old male Chinese patient was diagnosed with NF-1 10 years ago and presented with upper abdominal discomfort and black stools. Endoscopic ultrasonography and an enhanced abdominal computed tomography scan revealed a mass located 4 cm from the muscular layer of the descending duodenum. A 59-year-old Chinese woman who was diagnosed with NF-1 25 years ago presented with sudden unconsciousness and black stools. Multiple masses in the duodenum were noted by echogastroscopy and an enhanced abdominal computed tomography scan. Both patients presented with cutaneous neurofibromas. The histologic examination of tumors from both patients revealed spindle cells and low mitotic activity. Immunohistochemically, the tumor cells showed strong positivity for KIT(CD117), DOG-1, CD34, and Dehydrogenase Complex Subunit B, and negativity for SMA, desmin, S-100, and β-catenin. None of the six tumors from two patients had KIT exon 9, 11, 13, or 17 or platelet-derived growth factor receptor α exon 12 or 18 mutation, which is a typical finding for sporadic GISTs. None of the six tumors from the two patients had a BRAFV600 E mutation. The patients were alive and well during the follow-up period(range:0.6-5 yr).CONCLUSION There have been only a few previous reports of GISTs associated with NF-1.Although GISTs associated with NF-1 have morphologic and immunohistochemical similarities with GISTs, the pathogenesis, incidence,genetic background, and prognosis are not completely known. A medical history of NF-1 in a patient who has gastrointestinal bleeding or anemia and an intraabdominal mass with nonspecific computed tomography features may help in diagnosing GIST by virtue of the well-known association of these two entities.Molecular genetic studies of cases indicated that GISTs in NF-1 patients have a different pathogenesis than sporadic GISTs.展开更多
BACKGROUND: Studies have demonstrated that NG2-positive glial cells in the adult rats are predominantly located in the gray and white matter of the cerebral cortex and hippocampus. Platelet-derived growth factor-a re...BACKGROUND: Studies have demonstrated that NG2-positive glial cells in the adult rats are predominantly located in the gray and white matter of the cerebral cortex and hippocampus. Platelet-derived growth factor-a receptor (PDGF-αR) cells are a subset of oligodendrocytes, which are not as mature as NG2-positive cells. Distribution and migration of PDGF-αR-positive cells in the rat brain remain poorly understood. OBJECTIVE: Using immunohistochemical methods, the distribution of oligodendrocyte precursor cells (PDGF-αR-positive) was analyzed in the adult rat brain. DESIGN, TIME AND SETTING: Immunohistochemical study was performed at the Department of Histology and Embryology of the Third Military Medical University from September 2007 to September 2008. MATERIALS: Rabbit anti-PDGF-αR polyclonal antibody was purchased from Santa Cruz Biotechnology, USA. Streptomycin-avidin-biotin complex immunohistochemistry kit was purchased from Zhongshan Goldenbridge Biotechnology, China. METHODS: Whole brains from 5 healthy, adult, Wistar rats were collected for immunohistochemistry, and the mean value of PDGF-αR-expressing cells was quantified. The absolute values were translated to ranked data of high, moderate, and low grades (high grade: 10 positive cells; moderate grade: 5-9 cells; low grade: 〈 5 cells in a 400 × visual field). Based on the number of cell processes and branches, as well as the number of PDGF-αR-positive cells, in different regions, the cells were classified into three categories, i.e., type Ⅰ-Ⅲ. From type I to type Ill, the number of processes gradually increased. MAIN OUTCOME MEARSURES: The number and distribution of PDGF-αR-positive cells in different brain regions of adult rats. RESULTS: PDGF-αR-positive cells were located in the forebrain and midbrain, but not in the cerebellum or brainstem. In the olfactory bulb and hippocampus, a total of 60% PDGF-αR-positive cells were type Ⅰ and these cells were not mature as others. In the cerebral cortex, olfactory system, hippocampus, and optic chiasma, where neuronal bodies aggregated, approximately 40% of the PDGF-αR-positive cells were type Ⅱ, with few type Ⅲ cells. In the white matter, corpus callosum, basal nucleus, and thalamus, PDGF-αR-positive cell density was moderate. In the olfactory bulb and hippocampus, PDGF-αR-positive cell density was high. PDGF-αR-positive cells were not observed in the cerebellum or brainstem CONCLUSION: PDGF-αR-positive cells were aggregated in the olfactory bulb and hippocampus in the adult, rat brain, but few cells were detected in the cerebellum and brainstem.展开更多
(-)-Epigallocatechin gallate (EGCG), a major polyphenolic constituent of green tea, can inhibit activity of specific receptor tyrosine kinases (RTKs) and related downstream signal transduction pathways, resultin...(-)-Epigallocatechin gallate (EGCG), a major polyphenolic constituent of green tea, can inhibit activity of specific receptor tyrosine kinases (RTKs) and related downstream signal transduction pathways, resulting in the control of unwanted cell proliferation. The epidermal growth factor receptor (EGFR) signaling pathway is one of the most important pathways that regulates growth, survival,proliferation and differentiation in mammalian cells. This review addresses the effects of EGCG on some protein factors involved in the EGFR signaling pathway in a direct or indirect manner. Based on our understanding of the interaction between EGCG and these factors, and based on their structures, EGCG could be used as a lead compound for designing and synthesizing novel drugs with significant biological activity.展开更多
Platelet-derived growth factor receptor alpha (PDGFRct) is a marker of oligodendrocyte precursor cells in the central nervous system. NG2 is also considered a marker of oligodendrocyte precursor cells. However, whet...Platelet-derived growth factor receptor alpha (PDGFRct) is a marker of oligodendrocyte precursor cells in the central nervous system. NG2 is also considered a marker of oligodendrocyte precursor cells. However, whether there are differences in the distribution and morphol- ogy of oligodendrocyte precursor cells labeled by NG2 or PDGFRa in the developing neonatal rat brain remains unclear. In this study, by immunohistochemical staining, NG2 positive (NG2+) cells were ubiquitous in the molecular layer, external pyramidal layer, internal pyramidal layer, and polymorphic layer of the cerebral cortex, and corpus callosum, external capsule, piriform cortex, and medial septal nucleus. NG2~ cells were stellate or fusiform in shape with long processes that were progressively decreased and shortened over the course of brain development. The distribution and morphology of PDGFRct positive (PDGFRa+) cells were coincident with NG2+ cells. The co- localization of NG2 and PDGFRu in the cell bodies and processes of some cells was confirmed by double immunofluorescence labeling. Moreover, cells double-labeled for NG2 and PDGFRa were predominantly in the early postnatal stage of development. The numbers of NG2+/PDGFRa+ cells and PDGFRa+ cells decreased, but the number of NG2+ cells increased from postnatal days 3 to 14 in the developing brain. In addition, amoeboid microglial cells of the corpus callosum, newborn brain macrophages in the normal developing brain, did not express NG2 or PDGFRu, but NG2 expression was detected in amoeboid microglia after hypoxia. The present results suggest that NG2 and PDGFRct are specific markers of oligodendrocyte precursor cells at different stages during early development. Additionally, the NG2 protein is involved in inflammatory and pathological processes of amoeboid microglial cells.展开更多
BACKGROUND The transforming growth factor β(TGFβ) signaling pathway plays a crucial role in the development of liver fibrosis by activating TGFβ type Ⅱ receptor(TGFβR2), followed by the recruitment of TGFβR1 fin...BACKGROUND The transforming growth factor β(TGFβ) signaling pathway plays a crucial role in the development of liver fibrosis by activating TGFβ type Ⅱ receptor(TGFβR2), followed by the recruitment of TGFβR1 finally triggering downstream signaling pathway.AIM To find drugs targeting TGFβR2 that inhibit TGFβR1/TGFβR2 complex formation, theoretically inhibit TGFβ signaling pathway, and thereby ameliorate liver fibrosis.METHODS Food and Drug Administration-approved drugs were screened for binding affinity with TGFβR2 by virtual molecular docking. We identified 6 candidates and further explored their potential by Cell Counting Kit-8(CCK-8) cell cytotoxic experiment to validate toxicity and titrated the best cellular working concentrations. Next, we further demonstrated the detailed molecular working mechanisms using mutagenesis analysis. Finally, we used a mouse model to investigate its potential anti-liver fibrosis effect.RESULTS We identified 6 drug candidates. Among these 6 drugs, dihydroergotamine(DHE) shows great ability in reducing fibrotic gene expressions such as collagen, p-SMAD3, and α-SMA in TGFβ induced cellular model of liver fibrosis in LX-2 cells. Furthermore, we demonstrated that DHE binds to TGFβR2. Moreover, mutation of Leu27, Phe30, Thr51, Ser52, Ile53, and Glu55 of TGFβR2 disrupted the binding of TGFβR2 with DHE. In addition, DHE significantly improved liver fibrosis, as evidenced by Masson’s trichrome staining of liver sections. This is further supported by the width and the velocity of the portal vein, and serum markers of liver function. In line with those observations, DHE also decreased macrophages infiltration and extracellular matrix deposition in the liver.CONCLUSION DHE alleviates liver fibrosis by binding to TGFβR2 thereby suppressing TGFβ signaling pathway. We show here that as far as drug repurposing, DHE has great potential to treat liver fibrosis.展开更多
Fibroblast growth factor receptors(FGFRs) regulate a variety of cellular functions, from embryogenesis to adult tissue homeostasis. FGFR signaling also plays significant roles in the proliferation, invasion, and survi...Fibroblast growth factor receptors(FGFRs) regulate a variety of cellular functions, from embryogenesis to adult tissue homeostasis. FGFR signaling also plays significant roles in the proliferation, invasion, and survival of several types of tumor cells. FGFR-induced alterations, including gene amplification, chromosomal translocation, and mutations, have been shown to be associated with the tumor initiation and progression of gastric cancer, especially in diffuse-type cancers. Therefore, the FGFR signaling pathway might be one of the therapeutic targets in gastric cancer. This review aims to provide an overview of the role of FGFR signaling in tumorigenesis, tumor progression, proliferation, and chemoresistance. We also discuss the accumulating evidence that demonstrates the effectiveness of using clinical therapeutic agents to inhibit FGFR signaling for the treatment of gastric cancer.展开更多
AIM:To investigate the involvement of pericyte-Müller glia interaction in retinal damage repair and assess the influence of suppressing the platelet-derived growth factor receptorβ(PDGFRβ)signaling pathway in r...AIM:To investigate the involvement of pericyte-Müller glia interaction in retinal damage repair and assess the influence of suppressing the platelet-derived growth factor receptorβ(PDGFRβ)signaling pathway in retinal pericytes on photoreceptor loss and Müller glial response.METHODS:Sprague-Dawley rats were exposed to intense light to induce retinal injury.Neutralizing antibody against PDGFRβwere deployed to block the signaling pathway in retinal pericytes through intravitreal injection.Retinal histology and Müller glial reaction were assessed following light injury.In vitro,normal and PDGFRβ-blocked retinal pericytes were cocultured with Müller cell line(rMC-1)to examine morphological and protein expression changes upon supplementation with light-injured supernatants of homogenized retinas(SHRs).RESULTS:PDGFRβblockage 24h prior to intense light exposure resulted in a significant exacerbation of photoreceptor loss.The upregulation of GFAP and p-STAT3,observed after intense light exposure,was significantly inhibited in the PDGFRβblockage group.Fur ther upregulation of cytokines monocyte chemoattractant protein 1(MCP-1)and interleukin-1β(IL-1β)was also observed following PDGFRβinhibition.In the in vitro coculture system,the addition of light-injured SHRs induced pericyte deformation and upregulation of proliferating cell nuclear antigen(PCNA)expression,while Müller cells exhibited neuron-like morphology and expressed Nestin.However,PDGFRβblockage in retinal pericytes abolished these cellular responses to light-induced damage,consistent with the in vivo PDGFRβblockage findings.CONCLUSION:Pericyte-Müller glia interaction plays a potential role in the endogenous repair process of retinal injury.Impairment of this interaction exacerbates photoreceptor degeneration in light-induced retinal injury.展开更多
Background Activation and proliferation of hepatic stellate cells (HSC) is essentially involved in the development and progression of hepatic fibrosis. The most potent growth factor for HSC is platelet-derived growth...Background Activation and proliferation of hepatic stellate cells (HSC) is essentially involved in the development and progression of hepatic fibrosis. The most potent growth factor for HSC is platelet-derived growth factor receptor (PDGF) and PDGF receptor β subunit (PDGFR-β) is the predominant signal transduction pathyway of PDGF which is overexpressed in activated HSC. This study investigated the cleavage activity of hammerhead ribozyme targeting PDGFR-β mRNA in HSC and the effect on biological characteristics of HSC.Methods Expression vector of anti-PDGFR-β ribozyme was constructed and transfected into rat activated HSC with lipofectamin. The positive cell clones were gained by G418 selection. The expression of PDGFR-β, α-smooth muscle actin, and typeⅠand type Ⅲ collagen were detected by using Northern blot, Western blot and immunocytochemical staining, respectively. The cell proliferation was determined with MTT colorimetric assay. The cell apoptosis was analyzed by using flow cytometry, acridine orange fluorescence vital staining and transmission electron microscopy.Results The expression of PDGFR-β at mRNA and protein level was markedly reduced in ribozyme-transfected HSC by 49%-57% ( P <0.05-0.01). The proliferation and α-smooth muscle actin expression of ribozyme-transfected HSC were significantly decreased ( P <0.05-0.01), and the type Ⅰ and type Ⅲ collagen synthesis were also reduced ( P <0.01). In addition, the proliferative response of ribozyme-transfected HSC to PDGF BB was significantly inhibited. Otherwise, the apoptotic cells were significantly increased in ribozyme-transfected HSC ( P <0.01), and typical apoptotic cells could be found under transmission electron microscopy.Conclusions The anti-PDGFR-β ribozyme effectively cleaved the target RNA and significantly inhibited its expression, which blocked the signal transduction of PDGF at receptor level, inhibited HSC proliferation and collagen synthesis, and induced HSC apoptosis. These results suggest that inhibiting PDGFR-β expression of HSC may be a new target for the therapy of liver fibrogenesis, and ribozyme may be a useful tool for inhibiting PDGFR-β expression.展开更多
Background Vascular endothelial growth factor plays a key role in human colorectal carcinoma invasion and metastasis. However, the regulation mechanism remains unknown. Recent studies have shown that several cytokines...Background Vascular endothelial growth factor plays a key role in human colorectal carcinoma invasion and metastasis. However, the regulation mechanism remains unknown. Recent studies have shown that several cytokines can regulate the expression of vascular endothelial growth factor in tumor cells. In this study, we investigated whether hepatocyte growth factor can regulate the expression of vascular endothelial growth factor in colorectal carcinoma cells. Methods Hepatocyte growth factor and vascular endothelial growth factor in human serum were measured by ELISA. The mRNA level of vascular endothelial growth factor was analyzed by reverse transcription-PCR. Western blot assay was performed to evaluate levels of c-Met and several other proteins involved in the MAPK and PI3K signaling pathways in colorectal carcinoma cells. Results Serum hepatocyte growth factor and vascular endothelial growth factor were significantly increased in colorectal carcinoma subjects. In vitro extraneous hepatocyte growth factor markedly increased protein and mRNA levels of vascular endothelial growth factor in colorectal carcinoma cells. Hepatocyte growth factor induced phosphorylation of c-Met, ERK1/2 and AKT in a dose-dependent manner. Specific inhibitors on MEK and PI3K inhibited the hepatocyte growth factor-induced expression of vascular endothelial growth factor in colorectal carcinoma cells.Conclusion This present study indicates that hepatocyte growth factor upregulates the expression of vascular endothelial arowth factor in colorectal carcinoma cells via the MEK/ERK and PI3K/AKT sianalina Pathways.展开更多
Cancer treatments are rapidly changing.Curative treatment for oesophageal adenocarcinoma currently involves surgery and cytotoxic chemotherapy or chemoradiotherapy.Outcomes for both regimes are generally poor as a res...Cancer treatments are rapidly changing.Curative treatment for oesophageal adenocarcinoma currently involves surgery and cytotoxic chemotherapy or chemoradiotherapy.Outcomes for both regimes are generally poor as a result of tumor recurrence.We have reviewed the key signalling pathways associated with oesophageal adenocarcinomas and discussed the recent trials of novel agents that attempt to target these pathways.There are many trials underway with the aim of improving survival in oesophageal cancer.Currently,phase 2 and 3 trials are focused on MAP kinase inhibition,either through inhibition of growth factor receptors or signal transducer proteins.In order to avoid tumor resistance,it appears to be clear that targeted therapy will be needed to combat the multiple signalling pathways that are in operation in oesophageal adenocarcinomas.This may be achievable in the future with the advent of gene signatures and a combinatorial approach.展开更多
Objective:To investigate the regulation of the epidermal growth factor receptor(EGFR)pathway by visfatin and its effect on cardiac hypertrophy.Methods:60 Wistar male rats were randomly divided into control group,visfa...Objective:To investigate the regulation of the epidermal growth factor receptor(EGFR)pathway by visfatin and its effect on cardiac hypertrophy.Methods:60 Wistar male rats were randomly divided into control group,visfatin group and visfatin+AG1478 group,with 20 rats in each group.The cardiac mass index,left ventricular mass index and cardiomyocyte volume of rats in each group were calculated.The total protein content of each group of cardiomyocytes was detected by coomassie bright blue staining,and the protein expression was detected by Western blotting.Results:Compared with the control group,the cardiac mass index,left ventricular mass index,cardiomyocyte volume,protein content,and relative expressions of ANP and BNP were significantly increased in the visfatin group(P<0.05).The relative expression levels of EGFR,p-AKT,p-ERK1/2,p-STAT3,ANP and BNP in cardiac myocytes in the visfatin group were significantly higher than those in the control group and the visfatin+AG1478 group(P<0.05).Conclusion:Visfatin induces hypertrophy in cardiomyocytes by activating the EGFR signaling pathway.展开更多
基金the National Natural Science Foundation of China,No.30672166
文摘BACKGROUND: Vascular endothelial growth factor (VEGF) induces bone marrow-derived mesenchymal stem cell (BMSC) differentiation into vascular endothelial-like cells and promotes BMSC migration toward gliomas. However, the molecular mechanisms by which VEGF induces BMSC differentiation and migration remain poorly understood. OBJECTIVE; To investigate the role of platelet-derived growth factor (PDGF) receptor (PDGFR) in BMSC differentiation and migration induced by VEGE DESIGN, TIME AND SETTING: A parallel, controlled, in vitro experiment was performed at the Molecular Neurobiology & Neural Regeneration and Repairing Laboratory, Anhui Provincial Hospital of Anhui Medical University, China from June 2008 to March 2009. MATERIALS: U87 glioma cells were purchased from Shanghai Institutes for Biological Sciences; mouse anti-human PDGFR and VEGF receptor (VEGFR) monoclonal antibodies were purchased from Peprotech, USA. METHODS: Isolated BMSCs were precultured with neutralizing antibody for VEGFR-1, VEGFR-2, PDGFR-α, and PDGFR-β to block biological activity of related receptors, followed by induced differentiation with 50μg/L VEGF. BMSCs induced with 50μg/L VEGF alone served as the VEGF-induced group. The control group remained untreated. MAIN OUTCOME MEASURES: Cell surface markers were identified by flow cytometry; BMSC surface cytokine receptor expression was detected by reverse transcription-polymerase chain reaction; the Transwell model was used to observe cell migration. RESULTS: After blocking the PDGFR, VEGF did not induce BMSC cell surface marker CD-31 or von Willebrand factor (vWF) expression. However, inhibition with VEGF receptor blocking agents, VEGF induced BMSCs to express CD-31 and vWE Following inhibition of the PDGFR, the number of cells migrating through the polycarbonate membrane Transwell chamber was decreased, as well as the number of BMSCs migrating to glioma cells. However, through the use of VEGF receptor blocking agents, the number of migrating cells remained unchanged. VEGF preculture increased the number of BMSCs migrating to gliomas. CONCLUSION: VEGF interacts with PDGFRs on the BMSC surface to attract BMSC directional migration and induce BMSC differentiation. The VEGF/PDGFR pathway participates in BMSC directional migration to glioma. VEGF pretreatment increased efficiency of BMSC migration to glioma.
基金supported by the W.W. Smith Charitable Trust and Department of Defense (CDMRP) grants W81XWH-09-1-0593 and W81XWH-09-1-0724
文摘Metastasis represents by far the most feared complication of prostate carcinoma and is the main cause of death for patients.The skeleton is frequently targeted by disseminated cancer cells and represents the sole site of spread in more than 80% of prostate cancer cases.Compatibility between select malignant phenotypes and the microenvironment of colonized tissues is broadly recognized as the culprit for the organ-tropism of cancer cells.Here,we review our recent studies showing that the expression of platelet-derived growth factor receptor alpha(PDGFR a) supports the survival and growth of prostate cancer cells in the skeleton and that the soluble fraction of bone marrow activates PDGFR a in a ligand-independent fashion.Finally,we offer pre-clinical evidence that this receptor is a viable target for therapy.
基金Supported by National Children’s Research Centre/Children’s Medical Research Foundation,Ireland
文摘AIM: To investigate whether the expression of platelet-derived growth factor receptor-α-positive (PDGFRα<sup>+</sup>)-cells is altered in Hirschsprung’s disease (HD).METHODS: HD tissue specimens (n = 10) were collected at the time of pull-through surgery, while colonic control samples were obtained at the time of colostomy closure in patients with imperforate anus (n = 10). Immunolabelling of PDGFRα<sup>+</sup>-cells was visualized using confocal microscopy to assess the distribution of these cells, while Western blot analysis was undertaken to quantify PDGFRα protein expression.RESULTS: Confocal microscopy revealed PDGFRα<sup>+</sup>-cells within the mucosa, myenteric plexus and smooth muscle in normal controls, with a marked reduction in PDGFRα<sup>+</sup>-cells in the HD specimens. Western blotting revealed high levels of PDGFRα protein expression in normal controls, while there was a striking decrease in PDGFRα protein expression in the HD colon.CONCLUSION: These findings suggest that the altered distribution of PDGFRα<sup>+</sup>-cells in both the aganglionic and ganglionic HD bowel may contribute to the motility dysfunction in HD.
基金Supported by National Natural Science Foundation of China,No.81601692Program of Liaoning Province Department of Education,No.LK2016002
文摘BACKGROUND Gastrointestinal stromal tumors(GISTs) associated with neurofibromatosis are uncommon compared to their gastrointestinal counterparts. Patients with neurofibromatosis type 1(NF-1) have an increased risk of developing gastrointestinal tumors, including rare types such as GIST.CASE SUMMARY A 60-year-old male Chinese patient was diagnosed with NF-1 10 years ago and presented with upper abdominal discomfort and black stools. Endoscopic ultrasonography and an enhanced abdominal computed tomography scan revealed a mass located 4 cm from the muscular layer of the descending duodenum. A 59-year-old Chinese woman who was diagnosed with NF-1 25 years ago presented with sudden unconsciousness and black stools. Multiple masses in the duodenum were noted by echogastroscopy and an enhanced abdominal computed tomography scan. Both patients presented with cutaneous neurofibromas. The histologic examination of tumors from both patients revealed spindle cells and low mitotic activity. Immunohistochemically, the tumor cells showed strong positivity for KIT(CD117), DOG-1, CD34, and Dehydrogenase Complex Subunit B, and negativity for SMA, desmin, S-100, and β-catenin. None of the six tumors from two patients had KIT exon 9, 11, 13, or 17 or platelet-derived growth factor receptor α exon 12 or 18 mutation, which is a typical finding for sporadic GISTs. None of the six tumors from the two patients had a BRAFV600 E mutation. The patients were alive and well during the follow-up period(range:0.6-5 yr).CONCLUSION There have been only a few previous reports of GISTs associated with NF-1.Although GISTs associated with NF-1 have morphologic and immunohistochemical similarities with GISTs, the pathogenesis, incidence,genetic background, and prognosis are not completely known. A medical history of NF-1 in a patient who has gastrointestinal bleeding or anemia and an intraabdominal mass with nonspecific computed tomography features may help in diagnosing GIST by virtue of the well-known association of these two entities.Molecular genetic studies of cases indicated that GISTs in NF-1 patients have a different pathogenesis than sporadic GISTs.
基金Supported by: the National Natural Science Foundation of China, No. 30572364the Natural Science Foundation of Chongqing, No. 2007BB5008
文摘BACKGROUND: Studies have demonstrated that NG2-positive glial cells in the adult rats are predominantly located in the gray and white matter of the cerebral cortex and hippocampus. Platelet-derived growth factor-a receptor (PDGF-αR) cells are a subset of oligodendrocytes, which are not as mature as NG2-positive cells. Distribution and migration of PDGF-αR-positive cells in the rat brain remain poorly understood. OBJECTIVE: Using immunohistochemical methods, the distribution of oligodendrocyte precursor cells (PDGF-αR-positive) was analyzed in the adult rat brain. DESIGN, TIME AND SETTING: Immunohistochemical study was performed at the Department of Histology and Embryology of the Third Military Medical University from September 2007 to September 2008. MATERIALS: Rabbit anti-PDGF-αR polyclonal antibody was purchased from Santa Cruz Biotechnology, USA. Streptomycin-avidin-biotin complex immunohistochemistry kit was purchased from Zhongshan Goldenbridge Biotechnology, China. METHODS: Whole brains from 5 healthy, adult, Wistar rats were collected for immunohistochemistry, and the mean value of PDGF-αR-expressing cells was quantified. The absolute values were translated to ranked data of high, moderate, and low grades (high grade: 10 positive cells; moderate grade: 5-9 cells; low grade: 〈 5 cells in a 400 × visual field). Based on the number of cell processes and branches, as well as the number of PDGF-αR-positive cells, in different regions, the cells were classified into three categories, i.e., type Ⅰ-Ⅲ. From type I to type Ill, the number of processes gradually increased. MAIN OUTCOME MEARSURES: The number and distribution of PDGF-αR-positive cells in different brain regions of adult rats. RESULTS: PDGF-αR-positive cells were located in the forebrain and midbrain, but not in the cerebellum or brainstem. In the olfactory bulb and hippocampus, a total of 60% PDGF-αR-positive cells were type Ⅰ and these cells were not mature as others. In the cerebral cortex, olfactory system, hippocampus, and optic chiasma, where neuronal bodies aggregated, approximately 40% of the PDGF-αR-positive cells were type Ⅱ, with few type Ⅲ cells. In the white matter, corpus callosum, basal nucleus, and thalamus, PDGF-αR-positive cell density was moderate. In the olfactory bulb and hippocampus, PDGF-αR-positive cell density was high. PDGF-αR-positive cells were not observed in the cerebellum or brainstem CONCLUSION: PDGF-αR-positive cells were aggregated in the olfactory bulb and hippocampus in the adult, rat brain, but few cells were detected in the cerebellum and brainstem.
文摘(-)-Epigallocatechin gallate (EGCG), a major polyphenolic constituent of green tea, can inhibit activity of specific receptor tyrosine kinases (RTKs) and related downstream signal transduction pathways, resulting in the control of unwanted cell proliferation. The epidermal growth factor receptor (EGFR) signaling pathway is one of the most important pathways that regulates growth, survival,proliferation and differentiation in mammalian cells. This review addresses the effects of EGCG on some protein factors involved in the EGFR signaling pathway in a direct or indirect manner. Based on our understanding of the interaction between EGCG and these factors, and based on their structures, EGCG could be used as a lead compound for designing and synthesizing novel drugs with significant biological activity.
基金supported by grants from the National Natural Science Foundation of China,No.31100769
文摘Platelet-derived growth factor receptor alpha (PDGFRct) is a marker of oligodendrocyte precursor cells in the central nervous system. NG2 is also considered a marker of oligodendrocyte precursor cells. However, whether there are differences in the distribution and morphol- ogy of oligodendrocyte precursor cells labeled by NG2 or PDGFRa in the developing neonatal rat brain remains unclear. In this study, by immunohistochemical staining, NG2 positive (NG2+) cells were ubiquitous in the molecular layer, external pyramidal layer, internal pyramidal layer, and polymorphic layer of the cerebral cortex, and corpus callosum, external capsule, piriform cortex, and medial septal nucleus. NG2~ cells were stellate or fusiform in shape with long processes that were progressively decreased and shortened over the course of brain development. The distribution and morphology of PDGFRct positive (PDGFRa+) cells were coincident with NG2+ cells. The co- localization of NG2 and PDGFRu in the cell bodies and processes of some cells was confirmed by double immunofluorescence labeling. Moreover, cells double-labeled for NG2 and PDGFRa were predominantly in the early postnatal stage of development. The numbers of NG2+/PDGFRa+ cells and PDGFRa+ cells decreased, but the number of NG2+ cells increased from postnatal days 3 to 14 in the developing brain. In addition, amoeboid microglial cells of the corpus callosum, newborn brain macrophages in the normal developing brain, did not express NG2 or PDGFRu, but NG2 expression was detected in amoeboid microglia after hypoxia. The present results suggest that NG2 and PDGFRct are specific markers of oligodendrocyte precursor cells at different stages during early development. Additionally, the NG2 protein is involved in inflammatory and pathological processes of amoeboid microglial cells.
基金Supported by the Special Research Project for Capital Health Development,No.2022-2-2174the Beijing Municipal Science and Technology Commission,No.Z191100007619037.
文摘BACKGROUND The transforming growth factor β(TGFβ) signaling pathway plays a crucial role in the development of liver fibrosis by activating TGFβ type Ⅱ receptor(TGFβR2), followed by the recruitment of TGFβR1 finally triggering downstream signaling pathway.AIM To find drugs targeting TGFβR2 that inhibit TGFβR1/TGFβR2 complex formation, theoretically inhibit TGFβ signaling pathway, and thereby ameliorate liver fibrosis.METHODS Food and Drug Administration-approved drugs were screened for binding affinity with TGFβR2 by virtual molecular docking. We identified 6 candidates and further explored their potential by Cell Counting Kit-8(CCK-8) cell cytotoxic experiment to validate toxicity and titrated the best cellular working concentrations. Next, we further demonstrated the detailed molecular working mechanisms using mutagenesis analysis. Finally, we used a mouse model to investigate its potential anti-liver fibrosis effect.RESULTS We identified 6 drug candidates. Among these 6 drugs, dihydroergotamine(DHE) shows great ability in reducing fibrotic gene expressions such as collagen, p-SMAD3, and α-SMA in TGFβ induced cellular model of liver fibrosis in LX-2 cells. Furthermore, we demonstrated that DHE binds to TGFβR2. Moreover, mutation of Leu27, Phe30, Thr51, Ser52, Ile53, and Glu55 of TGFβR2 disrupted the binding of TGFβR2 with DHE. In addition, DHE significantly improved liver fibrosis, as evidenced by Masson’s trichrome staining of liver sections. This is further supported by the width and the velocity of the portal vein, and serum markers of liver function. In line with those observations, DHE also decreased macrophages infiltration and extracellular matrix deposition in the liver.CONCLUSION DHE alleviates liver fibrosis by binding to TGFβR2 thereby suppressing TGFβ signaling pathway. We show here that as far as drug repurposing, DHE has great potential to treat liver fibrosis.
基金Supported by KAKENHI(partiallyGrant-in-Aid for Scientific ResearchNo.23390329)
文摘Fibroblast growth factor receptors(FGFRs) regulate a variety of cellular functions, from embryogenesis to adult tissue homeostasis. FGFR signaling also plays significant roles in the proliferation, invasion, and survival of several types of tumor cells. FGFR-induced alterations, including gene amplification, chromosomal translocation, and mutations, have been shown to be associated with the tumor initiation and progression of gastric cancer, especially in diffuse-type cancers. Therefore, the FGFR signaling pathway might be one of the therapeutic targets in gastric cancer. This review aims to provide an overview of the role of FGFR signaling in tumorigenesis, tumor progression, proliferation, and chemoresistance. We also discuss the accumulating evidence that demonstrates the effectiveness of using clinical therapeutic agents to inhibit FGFR signaling for the treatment of gastric cancer.
基金Supported by National Natural Science Foundation of China(No.81900862)。
文摘AIM:To investigate the involvement of pericyte-Müller glia interaction in retinal damage repair and assess the influence of suppressing the platelet-derived growth factor receptorβ(PDGFRβ)signaling pathway in retinal pericytes on photoreceptor loss and Müller glial response.METHODS:Sprague-Dawley rats were exposed to intense light to induce retinal injury.Neutralizing antibody against PDGFRβwere deployed to block the signaling pathway in retinal pericytes through intravitreal injection.Retinal histology and Müller glial reaction were assessed following light injury.In vitro,normal and PDGFRβ-blocked retinal pericytes were cocultured with Müller cell line(rMC-1)to examine morphological and protein expression changes upon supplementation with light-injured supernatants of homogenized retinas(SHRs).RESULTS:PDGFRβblockage 24h prior to intense light exposure resulted in a significant exacerbation of photoreceptor loss.The upregulation of GFAP and p-STAT3,observed after intense light exposure,was significantly inhibited in the PDGFRβblockage group.Fur ther upregulation of cytokines monocyte chemoattractant protein 1(MCP-1)and interleukin-1β(IL-1β)was also observed following PDGFRβinhibition.In the in vitro coculture system,the addition of light-injured SHRs induced pericyte deformation and upregulation of proliferating cell nuclear antigen(PCNA)expression,while Müller cells exhibited neuron-like morphology and expressed Nestin.However,PDGFRβblockage in retinal pericytes abolished these cellular responses to light-induced damage,consistent with the in vivo PDGFRβblockage findings.CONCLUSION:Pericyte-Müller glia interaction plays a potential role in the endogenous repair process of retinal injury.Impairment of this interaction exacerbates photoreceptor degeneration in light-induced retinal injury.
文摘Background Activation and proliferation of hepatic stellate cells (HSC) is essentially involved in the development and progression of hepatic fibrosis. The most potent growth factor for HSC is platelet-derived growth factor receptor (PDGF) and PDGF receptor β subunit (PDGFR-β) is the predominant signal transduction pathyway of PDGF which is overexpressed in activated HSC. This study investigated the cleavage activity of hammerhead ribozyme targeting PDGFR-β mRNA in HSC and the effect on biological characteristics of HSC.Methods Expression vector of anti-PDGFR-β ribozyme was constructed and transfected into rat activated HSC with lipofectamin. The positive cell clones were gained by G418 selection. The expression of PDGFR-β, α-smooth muscle actin, and typeⅠand type Ⅲ collagen were detected by using Northern blot, Western blot and immunocytochemical staining, respectively. The cell proliferation was determined with MTT colorimetric assay. The cell apoptosis was analyzed by using flow cytometry, acridine orange fluorescence vital staining and transmission electron microscopy.Results The expression of PDGFR-β at mRNA and protein level was markedly reduced in ribozyme-transfected HSC by 49%-57% ( P <0.05-0.01). The proliferation and α-smooth muscle actin expression of ribozyme-transfected HSC were significantly decreased ( P <0.05-0.01), and the type Ⅰ and type Ⅲ collagen synthesis were also reduced ( P <0.01). In addition, the proliferative response of ribozyme-transfected HSC to PDGF BB was significantly inhibited. Otherwise, the apoptotic cells were significantly increased in ribozyme-transfected HSC ( P <0.01), and typical apoptotic cells could be found under transmission electron microscopy.Conclusions The anti-PDGFR-β ribozyme effectively cleaved the target RNA and significantly inhibited its expression, which blocked the signal transduction of PDGF at receptor level, inhibited HSC proliferation and collagen synthesis, and induced HSC apoptosis. These results suggest that inhibiting PDGFR-β expression of HSC may be a new target for the therapy of liver fibrogenesis, and ribozyme may be a useful tool for inhibiting PDGFR-β expression.
文摘Background Vascular endothelial growth factor plays a key role in human colorectal carcinoma invasion and metastasis. However, the regulation mechanism remains unknown. Recent studies have shown that several cytokines can regulate the expression of vascular endothelial growth factor in tumor cells. In this study, we investigated whether hepatocyte growth factor can regulate the expression of vascular endothelial growth factor in colorectal carcinoma cells. Methods Hepatocyte growth factor and vascular endothelial growth factor in human serum were measured by ELISA. The mRNA level of vascular endothelial growth factor was analyzed by reverse transcription-PCR. Western blot assay was performed to evaluate levels of c-Met and several other proteins involved in the MAPK and PI3K signaling pathways in colorectal carcinoma cells. Results Serum hepatocyte growth factor and vascular endothelial growth factor were significantly increased in colorectal carcinoma subjects. In vitro extraneous hepatocyte growth factor markedly increased protein and mRNA levels of vascular endothelial growth factor in colorectal carcinoma cells. Hepatocyte growth factor induced phosphorylation of c-Met, ERK1/2 and AKT in a dose-dependent manner. Specific inhibitors on MEK and PI3K inhibited the hepatocyte growth factor-induced expression of vascular endothelial growth factor in colorectal carcinoma cells.Conclusion This present study indicates that hepatocyte growth factor upregulates the expression of vascular endothelial arowth factor in colorectal carcinoma cells via the MEK/ERK and PI3K/AKT sianalina Pathways.
基金Supported by UK National Institute of Health Research/Cancer Research Network (UK NIHR/UKCRN) and Research and Development Department of Wrightington Wigan and Leigh NHS Foundation Trust (to Ang YS)R Keld WrightingtonWigan and Leigh NHS Foundation Trust Cancer Therapy Fund(to Keld RR,in part)
文摘Cancer treatments are rapidly changing.Curative treatment for oesophageal adenocarcinoma currently involves surgery and cytotoxic chemotherapy or chemoradiotherapy.Outcomes for both regimes are generally poor as a result of tumor recurrence.We have reviewed the key signalling pathways associated with oesophageal adenocarcinomas and discussed the recent trials of novel agents that attempt to target these pathways.There are many trials underway with the aim of improving survival in oesophageal cancer.Currently,phase 2 and 3 trials are focused on MAP kinase inhibition,either through inhibition of growth factor receptors or signal transducer proteins.In order to avoid tumor resistance,it appears to be clear that targeted therapy will be needed to combat the multiple signalling pathways that are in operation in oesophageal adenocarcinomas.This may be achievable in the future with the advent of gene signatures and a combinatorial approach.
基金Hebei province science and technology support plan project(No.132777186)。
文摘Objective:To investigate the regulation of the epidermal growth factor receptor(EGFR)pathway by visfatin and its effect on cardiac hypertrophy.Methods:60 Wistar male rats were randomly divided into control group,visfatin group and visfatin+AG1478 group,with 20 rats in each group.The cardiac mass index,left ventricular mass index and cardiomyocyte volume of rats in each group were calculated.The total protein content of each group of cardiomyocytes was detected by coomassie bright blue staining,and the protein expression was detected by Western blotting.Results:Compared with the control group,the cardiac mass index,left ventricular mass index,cardiomyocyte volume,protein content,and relative expressions of ANP and BNP were significantly increased in the visfatin group(P<0.05).The relative expression levels of EGFR,p-AKT,p-ERK1/2,p-STAT3,ANP and BNP in cardiac myocytes in the visfatin group were significantly higher than those in the control group and the visfatin+AG1478 group(P<0.05).Conclusion:Visfatin induces hypertrophy in cardiomyocytes by activating the EGFR signaling pathway.