Based on the observation of outcrops and cores,thin section identification,restoration of paleogeomorphology by residual thickness method,fine description of seismic facies,etc.,the coupling relationships between the ...Based on the observation of outcrops and cores,thin section identification,restoration of paleogeomorphology by residual thickness method,fine description of seismic facies,etc.,the coupling relationships between the development patterns of various types of Cambrian platform margin mound-shoal complexes and paleogeomorphology in the Gucheng area of Tarim Basin have been examined.The Cambrian platform margin mound-shoal complex is divided into mound base,mound core,mound front,mound back and mound flat microfacies,which are composed of dolomites of seven textures with facies indication.The different paleogeomorphology before the deposition of mound-shoal complex in each period was reconstructed,and three types of mound-shoal complex sedimentary models corresponding to the paleogeomorphologies of four stages were established:namely,the first stage of gentle slope symmetric accretion type,the second stage of steep slope asymmetric accretion type and the third and fourth stages of steep slope asymmetric progradation type.Their microfacies are respectively characterized by-mound base-mound back+(small)mound core+mound front-mound flat"symmetric vertical accretion structure,"mound base-(large)mound core+mound front-mound flat"asymmetric vertical accretion structure,"mound base-(small)mound core+mound front-mound flat"asymmetric lateral progradation structure.With most developed favorable reservoir facies belt,the steep slope asymmetric accretion type mound-shoal complex with the characteristics of"large mound and large shoal"is the exploration target for oil and gas reservoir.展开更多
Based on the seismic, logging, drilling and other data, the distribution, structural types and mound-shoal hydrocarbon accumulation characteristics of platform margins of the Sinian Dengying Formation in the Deyang-An...Based on the seismic, logging, drilling and other data, the distribution, structural types and mound-shoal hydrocarbon accumulation characteristics of platform margins of the Sinian Dengying Formation in the Deyang-Anyue Rift and its periphery were analyzed. Four types of platform margins are developed in the Dengying Formation, i.e., single-stage fault-controlled platform margin, multi-stage fault-controlled platform margin, gentle slope platform margin, and overlapping platform margin. In the Gaoshiti West-Weiyuan East area, single-stage fault controlled platform margins are developed in the Deng 2 Member, which trend in nearly NEE direction and are shielded by faults and mudstones, forming fault-controlled–lithologic traps. In the Lezhi-Penglai area, independent and multi-stage fault controlled platform margins are developed in the Deng 2 Member, which trend in NE direction and are controlled by synsedimentary faults;the mound-shoal complexes are aggraded and built on the hanging walls of the faults, and they are shielded by tight intertidal belts and the Lower Cambrian source rocks in multiple directions, forming fault-controlled–lithologic and other composite traps. In the Weiyuan-Ziyang area, gentle slope platform margins are developed in the Deng 2 Member, which trend in NW direction;the mound-shoal complexes are mostly thin interbeds as continuous bands and shielded by tight intertidal belts in the updip direction, forming lithologic traps. In the Gaoshiti-Moxi-Yanting area, overlapping platform margins are developed in the Deng 2 and Deng 4 members;the mound-shoal complexes are aggraded and overlaid to create platform margin buildup with a huge thickness and sealed by tight intertidal belts and the Lower Cambrian mudstones in the updip direction, forming large-scale lithologic traps on the north slope of the Central Sichuan Paleouplift. To summarize, the mound-shoal complexes on the platform margins in the Dengying Formation in the Penglai-Zhongjiang area, Moxi North-Yanting area and Weiyuan-Ziyang area are large in scale, with estimated resources of 1.58×1012 m3, and they will be the key targets for the future exploration of the Dengying Formation in the Sichuan Basin.展开更多
In this paper, the seismic response of a newly designed steel jacket offshore platform with a float over deck (FOD) system in the Persian Gulf was investigated through incremental dynamic analysis. Comparison of inc...In this paper, the seismic response of a newly designed steel jacket offshore platform with a float over deck (FOD) system in the Persian Gulf was investigated through incremental dynamic analysis. Comparison of incremental dynamic analysis results for both directions of the platform shows that the lateral strength of the platform in the float over direction is less than its lateral strength in other direction. Dynamic characteristics measurement of a scale model of platform was also performed using forced vibration tests. From experimental measurement of the scaled model, it was observed that dynamic characteristic of the platform is different in the float over direction compared to the other direction. Therefore, a new offshore installed bracing system for the float over direction was proposed for improvement of seismic performance of this type of platform. Finally, the structure with the modified system was assessed using the probabilistic seismic assessment method as well as experimental measurement of its dynamic characteristics. It was observed that the proposed offshore installed bracing system improves the performance of platforms subjected to strong ground motion.展开更多
The floating offshore wind turbine(FOWT) is widely used for harvesting marine wind energy. Its dynamic responses under offshore wind and wave environment provide essential reference for the design and installation. In...The floating offshore wind turbine(FOWT) is widely used for harvesting marine wind energy. Its dynamic responses under offshore wind and wave environment provide essential reference for the design and installation. In this study,the dynamic responses of a 6 MW Spar type FOWT designed for the water depth of 100 m are investigated by means of the wave tank experiment and numerical analysis. A scaled model is manufactured for the experiment at a ratio of65.3, while the numerical model is constructed on the open-source platform FAST(Fatigue, Aerodynamics,Structures, and Turbulence). Still water tests, wind-induced only tests, wave-induced only tests and combined windwave-current tests are all conducted experimentally and numerically. The accuracy of the experimental set-up as well as the loading generation has been verified. Surge, pitch and heave motions are selected to analyze and the numerical results agree well with the experimental values. Even though results obtained by using the FOWT calculation model established in FAST software show some deviations from the test results, the trends are always consistent. Both experimental and numerical studies demonstrate that they are reliable for the designed 6 MW Spar type FOWT.展开更多
In the present research,results of buckling analysis of 384 finite element models,verified using three different test results obtained from three separate experimental investigations,were used to study the effects of ...In the present research,results of buckling analysis of 384 finite element models,verified using three different test results obtained from three separate experimental investigations,were used to study the effects of five parameters such as D/t,L/D,imperfection,mesh size and mesh size ratio.Moreover,proposed equations by offshore structural standards concerning global and local buckling capacity of tubular members including former API RP 2A WSD and recent API RP 2A LRFD,ISO 19902,and NORSOK N-004 have been compared to FE and experimental results.One of the most crucial parts in the estimation of the capacity curve of offshore jacket structures is the correct modeling of compressive members to properly investigate the interaction of global and local buckling which leads to the correct estimation of performance levels and ductility.Achievement of the proper compressive behavior of tubular members validated by experimental data is the main purpose of this paper.Modeling of compressive braces of offshore jacket platforms by 3D shell or solid elements can consider buckling modes and deformations due to local buckling.ABAQUS FE software is selected for FE modeling.The scope of action of each of elastic buckling,plastic buckling,and compressive yielding for various L/r ratios is described.Furthermore,the most affected part of each parameter on the buckling capacity curve is specified.The pushover results of the Resalat Jacket with proper versus improper modeling of compressive members have been compared as a case study.According to the results,applying improper mesh size for compressive members can under-predict the ductility by 33%and under-estimate the lateral loading capacity by up to 8%.Regarding elastic stiffness and post-buckling strength,the mesh size ratio is introduced as the most effective parameter.Besides,imperfection is significantly the most important parameter in terms of critical buckling load.展开更多
This paper discusses the reservoir space in carbonate rocks in terms of types,combination features,distribution regularity,and controlling factors,based on core observations and tests of the North Truva Oilfield,Caspi...This paper discusses the reservoir space in carbonate rocks in terms of types,combination features,distribution regularity,and controlling factors,based on core observations and tests of the North Truva Oilfield,Caspian Basin.According to the reservoir space combinations,carbonate reservoirs can be divided into four types,i.e.,pore,fracture-pore,pore-cavity-fracture,and pore-cavity.Formation and distribution of these reservoirs is strongly controlled by deposition,diagenesis,and tectonism.In evaporated platform and restricted platform facies,the reservoirs are predominately affected by meteoric fresh water leaching in the supergene-para-syngenetic period and by uplifting and erosion in the late stage,making both platform facies contain all the above-mentioned four types of reservoirs,with various pores,such as dissolved cavities and dissolved fractures,or structural fractures occasionally in favorable structural locations.In open platform facies,the reservoirs deposited continuously in deeper water,in an environment of alternative high-energy shoals(where pore-fracture-type reservoirs are dominant) and low-energy shoals(where pore reservoirs are dominant).展开更多
Purpose–Traffic density is one of the most important parameters to consider in the traffic operationfield.Owing to limited data sources,traditional methods cannot extract traffic density directly.In the vehicular ad hoc ...Purpose–Traffic density is one of the most important parameters to consider in the traffic operationfield.Owing to limited data sources,traditional methods cannot extract traffic density directly.In the vehicular ad hoc network(VANET)environment,the vehicle-to-vehicle(V2V)and vehicle-to-infrastructure(V2I)interaction technologies create better conditions for collecting the whole time-space and refined traffic data,which provides a new approach to solving this problem.Design/methodology/approach–On that basis,a real-time traffic density extraction method has been proposed,including lane density,segment density and network density.Meanwhile,using SUMO and OMNet11 as traffic simulator and network simulator,respectively,the Veins framework as middleware and the two-way coupling VANET simulation platform was constructed.Findings–Based on the simulation platform,a simulated intersection in Shanghai was developed to investigate the adaptability of the model.Originality/value–Most research studies use separate simulation methods,importing trace data obtained by using from the simulation software to the communication simulation software.In this paper,the tight coupling simulation method is applied.Using real-time data and history data,the research focuses on the establishment and validation of the traffic density extraction model.展开更多
基金Supported by the National Natural Science Foundation of China(41772103)China National Science and Technology Major Project(2016ZX05007-002)Petrochina Science and Technology Major Project(2016E-0204)。
文摘Based on the observation of outcrops and cores,thin section identification,restoration of paleogeomorphology by residual thickness method,fine description of seismic facies,etc.,the coupling relationships between the development patterns of various types of Cambrian platform margin mound-shoal complexes and paleogeomorphology in the Gucheng area of Tarim Basin have been examined.The Cambrian platform margin mound-shoal complex is divided into mound base,mound core,mound front,mound back and mound flat microfacies,which are composed of dolomites of seven textures with facies indication.The different paleogeomorphology before the deposition of mound-shoal complex in each period was reconstructed,and three types of mound-shoal complex sedimentary models corresponding to the paleogeomorphologies of four stages were established:namely,the first stage of gentle slope symmetric accretion type,the second stage of steep slope asymmetric accretion type and the third and fourth stages of steep slope asymmetric progradation type.Their microfacies are respectively characterized by-mound base-mound back+(small)mound core+mound front-mound flat"symmetric vertical accretion structure,"mound base-(large)mound core+mound front-mound flat"asymmetric vertical accretion structure,"mound base-(small)mound core+mound front-mound flat"asymmetric lateral progradation structure.With most developed favorable reservoir facies belt,the steep slope asymmetric accretion type mound-shoal complex with the characteristics of"large mound and large shoal"is the exploration target for oil and gas reservoir.
基金Supported by the Science and Technology Project of PetroChina (2021DJ0605)。
文摘Based on the seismic, logging, drilling and other data, the distribution, structural types and mound-shoal hydrocarbon accumulation characteristics of platform margins of the Sinian Dengying Formation in the Deyang-Anyue Rift and its periphery were analyzed. Four types of platform margins are developed in the Dengying Formation, i.e., single-stage fault-controlled platform margin, multi-stage fault-controlled platform margin, gentle slope platform margin, and overlapping platform margin. In the Gaoshiti West-Weiyuan East area, single-stage fault controlled platform margins are developed in the Deng 2 Member, which trend in nearly NEE direction and are shielded by faults and mudstones, forming fault-controlled–lithologic traps. In the Lezhi-Penglai area, independent and multi-stage fault controlled platform margins are developed in the Deng 2 Member, which trend in NE direction and are controlled by synsedimentary faults;the mound-shoal complexes are aggraded and built on the hanging walls of the faults, and they are shielded by tight intertidal belts and the Lower Cambrian source rocks in multiple directions, forming fault-controlled–lithologic and other composite traps. In the Weiyuan-Ziyang area, gentle slope platform margins are developed in the Deng 2 Member, which trend in NW direction;the mound-shoal complexes are mostly thin interbeds as continuous bands and shielded by tight intertidal belts in the updip direction, forming lithologic traps. In the Gaoshiti-Moxi-Yanting area, overlapping platform margins are developed in the Deng 2 and Deng 4 members;the mound-shoal complexes are aggraded and overlaid to create platform margin buildup with a huge thickness and sealed by tight intertidal belts and the Lower Cambrian mudstones in the updip direction, forming large-scale lithologic traps on the north slope of the Central Sichuan Paleouplift. To summarize, the mound-shoal complexes on the platform margins in the Dengying Formation in the Penglai-Zhongjiang area, Moxi North-Yanting area and Weiyuan-Ziyang area are large in scale, with estimated resources of 1.58×1012 m3, and they will be the key targets for the future exploration of the Dengying Formation in the Sichuan Basin.
基金sponsored by POGC (Pars Oil and Gas Company,No.132 "Investigation of Structural Health Monitoring of Steel Jacket Offshore Platforms")The financial support of POGC is gratefully acknowledged
文摘In this paper, the seismic response of a newly designed steel jacket offshore platform with a float over deck (FOD) system in the Persian Gulf was investigated through incremental dynamic analysis. Comparison of incremental dynamic analysis results for both directions of the platform shows that the lateral strength of the platform in the float over direction is less than its lateral strength in other direction. Dynamic characteristics measurement of a scale model of platform was also performed using forced vibration tests. From experimental measurement of the scaled model, it was observed that dynamic characteristic of the platform is different in the float over direction compared to the other direction. Therefore, a new offshore installed bracing system for the float over direction was proposed for improvement of seismic performance of this type of platform. Finally, the structure with the modified system was assessed using the probabilistic seismic assessment method as well as experimental measurement of its dynamic characteristics. It was observed that the proposed offshore installed bracing system improves the performance of platforms subjected to strong ground motion.
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 51809170 and 51879160)the National Key R&D Program of China (Grant No. 2019YFB1503700)+1 种基金Program for Intergovernmental International S&T Cooperation Projects of Shanghai Municipality (Grant Nos.19160713600 and 18160744000)the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (Grant Nos. ZXDF010037 and ZXDF010040)。
文摘The floating offshore wind turbine(FOWT) is widely used for harvesting marine wind energy. Its dynamic responses under offshore wind and wave environment provide essential reference for the design and installation. In this study,the dynamic responses of a 6 MW Spar type FOWT designed for the water depth of 100 m are investigated by means of the wave tank experiment and numerical analysis. A scaled model is manufactured for the experiment at a ratio of65.3, while the numerical model is constructed on the open-source platform FAST(Fatigue, Aerodynamics,Structures, and Turbulence). Still water tests, wind-induced only tests, wave-induced only tests and combined windwave-current tests are all conducted experimentally and numerically. The accuracy of the experimental set-up as well as the loading generation has been verified. Surge, pitch and heave motions are selected to analyze and the numerical results agree well with the experimental values. Even though results obtained by using the FOWT calculation model established in FAST software show some deviations from the test results, the trends are always consistent. Both experimental and numerical studies demonstrate that they are reliable for the designed 6 MW Spar type FOWT.
文摘In the present research,results of buckling analysis of 384 finite element models,verified using three different test results obtained from three separate experimental investigations,were used to study the effects of five parameters such as D/t,L/D,imperfection,mesh size and mesh size ratio.Moreover,proposed equations by offshore structural standards concerning global and local buckling capacity of tubular members including former API RP 2A WSD and recent API RP 2A LRFD,ISO 19902,and NORSOK N-004 have been compared to FE and experimental results.One of the most crucial parts in the estimation of the capacity curve of offshore jacket structures is the correct modeling of compressive members to properly investigate the interaction of global and local buckling which leads to the correct estimation of performance levels and ductility.Achievement of the proper compressive behavior of tubular members validated by experimental data is the main purpose of this paper.Modeling of compressive braces of offshore jacket platforms by 3D shell or solid elements can consider buckling modes and deformations due to local buckling.ABAQUS FE software is selected for FE modeling.The scope of action of each of elastic buckling,plastic buckling,and compressive yielding for various L/r ratios is described.Furthermore,the most affected part of each parameter on the buckling capacity curve is specified.The pushover results of the Resalat Jacket with proper versus improper modeling of compressive members have been compared as a case study.According to the results,applying improper mesh size for compressive members can under-predict the ductility by 33%and under-estimate the lateral loading capacity by up to 8%.Regarding elastic stiffness and post-buckling strength,the mesh size ratio is introduced as the most effective parameter.Besides,imperfection is significantly the most important parameter in terms of critical buckling load.
基金supported by the National Major Science and Technology Project (No.2016ZX05030002)
文摘This paper discusses the reservoir space in carbonate rocks in terms of types,combination features,distribution regularity,and controlling factors,based on core observations and tests of the North Truva Oilfield,Caspian Basin.According to the reservoir space combinations,carbonate reservoirs can be divided into four types,i.e.,pore,fracture-pore,pore-cavity-fracture,and pore-cavity.Formation and distribution of these reservoirs is strongly controlled by deposition,diagenesis,and tectonism.In evaporated platform and restricted platform facies,the reservoirs are predominately affected by meteoric fresh water leaching in the supergene-para-syngenetic period and by uplifting and erosion in the late stage,making both platform facies contain all the above-mentioned four types of reservoirs,with various pores,such as dissolved cavities and dissolved fractures,or structural fractures occasionally in favorable structural locations.In open platform facies,the reservoirs deposited continuously in deeper water,in an environment of alternative high-energy shoals(where pore-fracture-type reservoirs are dominant) and low-energy shoals(where pore reservoirs are dominant).
文摘Purpose–Traffic density is one of the most important parameters to consider in the traffic operationfield.Owing to limited data sources,traditional methods cannot extract traffic density directly.In the vehicular ad hoc network(VANET)environment,the vehicle-to-vehicle(V2V)and vehicle-to-infrastructure(V2I)interaction technologies create better conditions for collecting the whole time-space and refined traffic data,which provides a new approach to solving this problem.Design/methodology/approach–On that basis,a real-time traffic density extraction method has been proposed,including lane density,segment density and network density.Meanwhile,using SUMO and OMNet11 as traffic simulator and network simulator,respectively,the Veins framework as middleware and the two-way coupling VANET simulation platform was constructed.Findings–Based on the simulation platform,a simulated intersection in Shanghai was developed to investigate the adaptability of the model.Originality/value–Most research studies use separate simulation methods,importing trace data obtained by using from the simulation software to the communication simulation software.In this paper,the tight coupling simulation method is applied.Using real-time data and history data,the research focuses on the establishment and validation of the traffic density extraction model.