Suzuki-Miyaura reaction of aryl halides with phenylboronic acid using a heterogeneous palladium catalyst based on activated carbons(AC) was systematically investigated in this work. Two different reaction modes(batch ...Suzuki-Miyaura reaction of aryl halides with phenylboronic acid using a heterogeneous palladium catalyst based on activated carbons(AC) was systematically investigated in this work. Two different reaction modes(batch procedure and continuous-flow procedure) were used to study the variations of reaction processing. The heterogeneous catalysts presented excellent reactivity and recyclability for iodobenzene and bromobenzene substrates in batch mode, which can be attributed to stabilization of Pd nanoparticles by the thiol and amino groups on the AC supports. However, significant dehalogenation in the reaction mixture and Pd leaching from the heterogeneous catalysts were observed in continuous-flow mode.This unique phenomenon in continuous-flow mode resulted in a dramatic decline in reaction selectivity and durability of heterogeneous catalysts comparing with that of batch mode. In addition, the heterogeneous Pd catalysts with thiol-and amino-modified AC supports exhibited different reactivity and durability in batch and continuous-flow mode owing to the difference of interaction between Pd species and AC supports.展开更多
A new zinc acetate catalyst which was prepared from modified activated carbon exhibited extreme activity towards the synthesis of vinyl acetate. The activated carbon was modified by nitric acid, vitriol and peroxyacet...A new zinc acetate catalyst which was prepared from modified activated carbon exhibited extreme activity towards the synthesis of vinyl acetate. The activated carbon was modified by nitric acid, vitriol and peroxyacetic acid (PAA). The effect on specific area, structure, pH and surface acidity groups of carders by modification was discussed. Amount of carbonyl and carboxyl groups in activated carbon was increased by peroxyacetic acid treatment. The productivity of the new catalyst was 14.58% higher than that of catalyst prepared using untreated activated carbon. The relationship between amount of carbonyl and carboxyl groups (m) and catalyst productivity (P) was P = 1.83 + 2.26 × 10^-3*e^3.17m. Reaction mechanism was proposed. C 2009 Liang Rong Feng. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.展开更多
Ten kinds of activated carbon from different raw materials were used as supports to prepare ruthenium catalysts. N_2 physisorption and CO chemisorption were carried out to investigate the pore size distribution and th...Ten kinds of activated carbon from different raw materials were used as supports to prepare ruthenium catalysts. N_2 physisorption and CO chemisorption were carried out to investigate the pore size distribution and the ruthenium dispersion of the catalysts. It was found that the Ru dispersion of the catalyst was closely related to not only the texture of carbon support but also the purity of activated carbon. The activities of a series of the carbon-supported barium-promoted Ru catalysts for ammonia synthesis were measured at 425 ℃, 10 0 MPa and 10 000 h -1. The result shows that the same raw material activated carbon, with a high purity, high surface area, large pore volume and reasonable pore size distribution might disperse ruthenium and promoter sufficiently, which activated carbon as support, could be used to manufacture ruthenium catalyst with a high activity for ammonia synthesis. The different raw material activated carbon as the support would greatly influence the catalytic properties of the ruthenium catalyst for ammonia synthesis. For example, with coconut shell carbon(AC1) as the support, the ammonia concentration in the effluent was 13 17% over 4%Ru-BaO/AC1 catalyst, while with the desulfurized coal carbon(AC10) as the support, that in the effluent was only 1 37% over 4%Ru-BaO/AC10 catalyst.展开更多
Platinum/carbon catalyst is one of the most important catalysts in hydrogenation of ortho-nitrochlorobenzene to 2,2′-dichlorohydrazobenzene. The preparation process and the supports of catalysts are studied in this p...Platinum/carbon catalyst is one of the most important catalysts in hydrogenation of ortho-nitrochlorobenzene to 2,2′-dichlorohydrazobenzene. The preparation process and the supports of catalysts are studied in this paper. Raw materials and preparation procedure of the activated carbon have great influences on the compositions and surface structure of platinum/carbon catalysts. Platinum catalysts supported on activated carbon with high purity, high surface area, large pore volume and appropriate pore structure usually exhibit higher activities for hydrogenation of ortho-nitrochlorobenzene to 2,2′-dichlorohydrazobenzene. The catalyst prepared from H2PtCl6 with pH=3 shows greater catalytic performance than those prepared under other conditions.展开更多
In this paper, a low-cost activated carbon(AC) was prepared from deactivated resin catalyst(DRC) for methyl tert-butyl ether(MTBE) synthesis through carbonization and subsequent steam activation treatment. The activat...In this paper, a low-cost activated carbon(AC) was prepared from deactivated resin catalyst(DRC) for methyl tert-butyl ether(MTBE) synthesis through carbonization and subsequent steam activation treatment. The activated carbon was characterized in detail. After loading various transition metals, including Cu^(2+), Ag+, Co^(2+), Ni^(2+), Zn^(2+), and Fe^(3+) via the ultrasonic-assisted impregnation method, a series of metal-loaded adsorbents(xM-AC) were obtained and their dimethyl sulfide(DMS) adsorption performance was investigated in a batch system. Among these adsorbents, 15Cu-AC presented a superior DMS adsorption capacity equating to 58.986 mg/g due to the formation of S-M(σ) bonds between Cu^(2+) and sulfur atoms of DMS as confirmed by the Raman spectra and kinetic study.展开更多
To improve the denitrification performance of carbon-based materials for sintering flue gas,we prepared a composite catalyst comprising coconut shell activated carbon(AC)modified by thermal oxidation air.The microstru...To improve the denitrification performance of carbon-based materials for sintering flue gas,we prepared a composite catalyst comprising coconut shell activated carbon(AC)modified by thermal oxidation air.The microstructure,the specific surface area,the pore volume,the crystal structure,and functional groups presented in the prepared Cu2O/AC catalysts were thoroughly characterized.By using scanning electron microscopy(SEM),nitrogen adsorption/desorption isotherms,Fourier-transform infrared(FTIR)spectroscopy and X-ray diffractometry(XRD),the effects of Cu2O loading and calcination temperature on Cu2O/AC catalysts were investigated at low temperature(150℃).The research shows that Cu on the Cu2O/AC catalyst is in the form of Cu2O with good crystalline performance and is spherical and uniformly dispersed on the AC surface.The loading of Cu2O increases the active sites and the specific surface area of the reaction gas contact,which is conducive to the rapid progress of the carbon monoxide selective catalytic reduction(CO-SCR)reaction.When the loading of Cu2O was 8%and the calcination temperature was 500℃,the removal rate of NOx facilitated by the Cu2O/AC catalyst reached 97.9%.These findings provide a theoretical basis for understanding the denitrification of sintering flue gas.展开更多
Activated carbon (AC) supported silver catalysts were prepared by incipient wetness impregnation method and their catalytic performance for CO preferential oxidation (PROX) in excess H2 was evaluated. Ag/AC cataly...Activated carbon (AC) supported silver catalysts were prepared by incipient wetness impregnation method and their catalytic performance for CO preferential oxidation (PROX) in excess H2 was evaluated. Ag/AC catalysts, after reduction in H2 at low temperatures (≤200 ℃) following heat treatment in He at 200 ℃ (He200H200), exhibited the best catalytic properties. Temperature-programmed desorption (TPD), X-ray diffraction (XRD) and temperature-programmed reduction (TPR) results indicated that silver oxides were produced during heat treatment in He at 200 ℃ which were reduced to metal silver nanoparticles in H2 at low temperatures (≤200 ℃), simultaneously generating the adsorbed water/OH. CO conversion was enhanced 40% after water treatment following heat treatment in He at 600 ℃. These results imply that the metal silver nanoparticles are the active species and the adsorbed water/OH has noticeable promotion effects on CO oxidation. However, the promotion effect is still limited compared to gold catalysts under the similar conditions, which may be the reason of low selectivity to CO oxidation in PROX over silver catalysts. The reported Ag/AC-S-He catalyst after He200H200 treatment displayed similar PROX of CO reaction properties to Ag/SiO2. This means that Ag/AC catalyst is also an efficient low-temperature CO oxidation catalyst.展开更多
TiO2-coated activated carbon surface (TAs) composites were prepared by a sol-gel method with supercritical pretreatment. The photocatalytic degradation of acid yellow (AY) was investigated under UV radiation to es...TiO2-coated activated carbon surface (TAs) composites were prepared by a sol-gel method with supercritical pretreatment. The photocatalytic degradation of acid yellow (AY) was investigated under UV radiation to estimate activity of catalysts and determine the kinetics. And the effects of parameters including the initial concentration of AY, light intensity and TiO2 content in catalysts were examined. The results indicate that TAs has a higher efficiency in decomposition of AY than P25, pure TiO2 particles as well as the mixture of TiO2 powder and active carbon. The photocatalytic degradation rate is found to follow the pseudo-first order kinetics with respect to the AY concentration. The new kinetic model fairly resembles the classic Langmuir-Hinshelwood equation, and the rate constant is proportional to the square root of the light intensity in a wide range. However, its absorption performance depends on the surface areas of catalysts. The model fits quite well with the experimental data and elucidates phenomena about the effects of the TiO2 content in TAs on the degradation rate.展开更多
Zero or negative emissions of carbon dioxide(CO2)is the need of the times,as inexorable rising and alarming levels of CO2 in the atmosphere lead to global warming and severe climate change.The electrochemical CO2 redu...Zero or negative emissions of carbon dioxide(CO2)is the need of the times,as inexorable rising and alarming levels of CO2 in the atmosphere lead to global warming and severe climate change.The electrochemical CO2 reduction(eCO2R)to value‐added fuels and chemicals by using renewable electricity provides a cleaner and more sustainable route with economic benefits,in which the key is to develop clean and economical electrocatalysts.Carbon‐based catalyst materials possess desirable properties such as high offset potential for H2 evolution and chemical stability at the negative applied potential.Although it is still challenging to achieve highly efficient carbon‐based catalysts,considerable efforts have been devoted to overcoming the low selectivity,activity,and stability.Here,we summarize and discuss the recent progress in carbon‐based metal‐free catalysts including carbon nanotubes,carbon nanofibers,carbon nanoribbons,graphene,carbon nitride,and diamonds with an emphasis on their activity,product selectivity,and stability.In addition,the key challenges and future potential approaches for efficient eCO2R to low carbon‐based fuels are highlighted.For a good understanding of the whole history of the development of eCO2R,the CO2 reduction reactions,principles,and techniques including the role of electrolytes,electrochemical cell design and evaluation,product selectivity,and structural composition are also discussed.The metal/metal oxides decorated with carbon‐based electrocatalysts are also summarized.We aim to provide insights for further development of carbon‐based metal‐free electrocatalysts for CO2 reduction from the perspective of both fundamental understanding and technological applications in the future.展开更多
Selective phenol hydrogenation is a green approach to produce cyclohexanone.It still remains a big challenge to prepare efficient supports of the catalysts for the phenol hydrogenation via a simple and cost-effective ...Selective phenol hydrogenation is a green approach to produce cyclohexanone.It still remains a big challenge to prepare efficient supports of the catalysts for the phenol hydrogenation via a simple and cost-effective approach.Herein,a facile approach was developed,i.e.,direct calcination of activated carbon(AC)under argon at high temperature,to improve its structure and surface properties.The modified AC materials were supported with Pd nanoparticles(NPs)to fabricate the Pd/C catalysts.The as-prepared Pd/C600 catalyst exhibits superior catalytic performance in the phenol hydrogenation,and its turnover frequency(TOF)value is 199.2 h^-1,1.31 times to that of Pd/C-raw.The Pd/C600 catalyst presents both better hydrophobicity and more structural defects,contributing to the improved dispersibility in the reaction solution(phenol-cyclohexane),the better Pd dispersion and the smaller Pd size,which result in the enhancement of the catalytic performance.Furthermore,the as-prepared Pd/C600 catalyst shows a good recyclability.展开更多
Mercury-containing catalysts are widely used for acetylene hydrochlorination in China. Surface chemical characteristics of the fresh low-level mercury catalysts and spent low-level mercury catalysts were compared usin...Mercury-containing catalysts are widely used for acetylene hydrochlorination in China. Surface chemical characteristics of the fresh low-level mercury catalysts and spent low-level mercury catalysts were compared using multiple characterization methods. Pore blockage and active site coverage caused by chlorine-containing organics are responsible for catalyst deactivation. The reactions of chloroethylene and acetylene with chlorine free radical can generate chlorine-containing organic species. SiO_2 and functional groups on activated carbon contribute to the generation of carbon deposition. No significant reduction in the total content of mercury was observed after catalyst deactivation, while there was mercury loss locally. The irreversible loss of HgCl_2 caused by volatilization, reduction and poisoning of elements S and P also can lead to catalyst deactivation. Si, Al, Ca and Fe oxides are scattered on the activated carbon. Active components are still uniformly absorbed on activated carbon after catalyst deactivation.展开更多
Metal-free carbon,as the most representative heterogeneous metal-free catalysts,have received considerable interests in electro-and thermo-catalytic reac-tions due to their impressive performance and sustainability.Ov...Metal-free carbon,as the most representative heterogeneous metal-free catalysts,have received considerable interests in electro-and thermo-catalytic reac-tions due to their impressive performance and sustainability.Over the past decade,well-designed carbon catalysts with tunable structures and heteroatom groups coupled with various characterization techniques have proposed numerous reaction mechanisms.However,active sites,key intermediate species,precise structure-activity relationships and dynamic evolution processes of carbon catalysts are still rife with controversies due to the monotony and limitation of used experimental methods.In this Review,we sum-marize the extensive efforts on model catalysts since the 2000s,particularly in the past decade,to overcome the influences of material and structure limitations in metal-free carbon catalysis.Using both nanomolecule model and bulk model,the real contribution of each alien species,defect and edge configuration to a series of fundamentally important reactions,such as thermocatalytic reactions,electrocatalytic reactions,were systematically studied.Combined with in situ techniques,isotope labeling and size control,the detailed reaction mechanisms,the precise 2D structure-activity relationships and the rate-determining steps were revealed at a molecular level.Furthermore,the outlook of model carbon catalysis has also been proposed in this work.展开更多
The effect of potassium-decoration was studied on the activity of water-gas shift (WGS) reaction over the Co-Mo-based catalysts supported on active carbon (AC), which was prepared by incipient wetness co-impregnat...The effect of potassium-decoration was studied on the activity of water-gas shift (WGS) reaction over the Co-Mo-based catalysts supported on active carbon (AC), which was prepared by incipient wetness co-impregnation method. The decoration of potassium on active carbon in advance enhances the activities of the CoMo-K/AC catalysts for WGS reaction. Highest activity (about 92% conversion) was obtained at 250 ? C for the catalyst with an optimum K 2 O/AC weight ratio in the range from 0.12 to 0.15. The catalysts were characterized by TPR and EPR, and the results show that activated carbon decorated with potassium makes Co-Mo species highly dispersed, and thus easily reduced and sulfurized. XRD results show that an appropriate content of potassium-decoration on active carbon supports may favors the formation of highly dispersed Co 9 S 8 -type structures which are situated on the edge or a site in contact with MoS 2 , K-Mo-O-S, Mo-S-K phase. Those active species are responsible for the high activity of CoMo-K/AC catalysts.展开更多
The Pt decorated Ni/C nanocatalysts were prepared for hydrogen oxidation reaction(HOR) in fuel cell.By regulating the contents of Pt and Ni in the catalyst,both the composition and the structure affected the electro...The Pt decorated Ni/C nanocatalysts were prepared for hydrogen oxidation reaction(HOR) in fuel cell.By regulating the contents of Pt and Ni in the catalyst,both the composition and the structure affected the electrochemical catalytic characteristics of the Pt-Ni/C catalysts.When the Pt mass content was 3.1% percent and that of Ni was 13.9% percent,the Pt-Ni/C-3 catalyst exhibited a larger electrochemically active surface area and a higher exchange current density toward HOR than those of pure supported platinum sample.Our study demonstrates a feasible approach for designing the more efficient catalysts with lower content of noble metal for HOR in fuel cell.展开更多
Silica, alumina, and activated carbon supported iron-cobalt catalysts were prepared by incipient wetness impregnation. These catalysts have been characterized by BET, X-ray diffraction (XRD), and temperature-program...Silica, alumina, and activated carbon supported iron-cobalt catalysts were prepared by incipient wetness impregnation. These catalysts have been characterized by BET, X-ray diffraction (XRD), and temperature-programmed reduction (TPR). Activity and selectivity of iron-cobalt supported on different carriers for CO hydrogenation were studied under the conditions of 1.5 MPa, 493 K, 630 h^-1, and H2/CO ratio of 1.6. The results indicate that the activity, C4 olefin/(C4 olefin+C4 paraffin) ratio, and C5 olefin/(C5 olefin+C5 paraffin) decrease in the order of Fe-Co/SiO2, Fe-Co/AC1, Fe-Co/Al2O3 and Fe- Co/AC2. The activity of Fe-Co/SiO2 reached a maximum. The results of TPR show that the Fe-Co/SiO2 catalyst is to some extent different. XRD patterns show that the Fe-Co/SiO2 catalyst differs significantly from the others; it has two diffraction peaks. The active spinel phase is correlated with the supports.展开更多
The CO2reforming of CH4is studied over MgO‐promoted Ni catalysts,which were supported on alumina prepared from hydrotalcite.This presents an improved stability compared with non‐promoted catalysts.The introduction o...The CO2reforming of CH4is studied over MgO‐promoted Ni catalysts,which were supported on alumina prepared from hydrotalcite.This presents an improved stability compared with non‐promoted catalysts.The introduction of the MgO promoter was achieved through the‘‘memory effect’’of the Ni‐Al hydrotalcite structure,and ICP‐MS confirmed that only0.42wt.%of Mg2+ions were added into the Ni‐Mg/Al catalyst.Although no differences in the Ni particle size and basicity strength were observed,the Ni‐Mg/Al catalyst showed a higher catalytic stability than the Ni/Al catalyst.A series of surface reaction experiments were used and showed that the addition of a MgO promoter with low concentration can promote CO2dissociation to form active surface oxygen arising from the formation of the Ni‐MgO interface sites.Therefore,the carbon‐resistance promotion by nature was suggested to contribute to an oxidative environment around Ni particles,which would increase the conversion of carbon residues from CH4cracking to yield CO on the Ni metal surface.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved.展开更多
The direct carbonylation of methanol, without any halide in the feed as apromoter, is presented. A series of Mo catalysts supported on activated carbon, γ-Al_2O_3 and SiO_2were prepared. The results show that the sup...The direct carbonylation of methanol, without any halide in the feed as apromoter, is presented. A series of Mo catalysts supported on activated carbon, γ-Al_2O_3 and SiO_2were prepared. The results show that the support greatly affects the Mo catalyst in the directvapor-phase carbonylation of methanol, and activated carbon is the best supports of the investigatedsupports. In addition, the relationships between adsorptions of NH_3 and CO and carbonylation ofmethanol were investigated. A novel sulfided Mo/C catalyst had high activity and selectivity for thevapor phase carbonylation of methanol to methyl acetate without the addition of a CH_3I promoter tothe feed. The reaction conditions were optimized at a reaction temperature of 573 K, a methanolconcentration of 23 mol% and a carbon monoxide space velocity of 3,000 L/(kg·h). Under theseoptimal conditions a methanol conversion of 50%, carbonylation selectivity of 80 rnol%, andspace-time yield of 8.0 mol/(kg·h) were obtained. The active phase of this novel sulfided Mo/Ccatalyst is the non-crystalline phase, and the active component is present as MoS_(2.5) on thesurface of the activated carbon.展开更多
The main problem in an efficient Zn(CH3COO)2/AC (AC-activated carbon) catalyst preparation is the achievement of uniform distribution of highly dispersed salt component on the activated carbon (AC) surface. The ...The main problem in an efficient Zn(CH3COO)2/AC (AC-activated carbon) catalyst preparation is the achievement of uniform distribution of highly dispersed salt component on the activated carbon (AC) surface. The solution of this problem is modification of the AC by hydrogen peroxide (H202) oxidation of the surface and treatment of AC with acetic acid as well as special methods of salt deposition and catalyst drying. The investigations of these ways of AC surface modification (treatment of AC with acetic acid and H2O2) have demonstrated the obtained AC to have both an increased adsorption capacity as to Zn(OAc)2 and optimum volumes of meso- and micro-pores as well as high catalyst activity in vinyl acetate (VA) synthesis. The characteristics of supports and catalysts were found out by benzene, water and acetic acid vapors adsorption. The distribution of the salt on the AC surface was studied by small-angle X-ray scattering (SAXS), by scanning electron microscopy (SEM) and X-ray micro-analysis (XMA). The catalysts were tested in vinyl acetate synthesis in flow-bed isothermal reactor by cyclic method at 175, 205 and 230℃.展开更多
The dipping method was devised to deposit Pd onto carbon nanotube as supported catalyst(Pd/CNT) for the copolymerization of carbon monoxide(CO) and styrene(ST) towards the formation of polyketone(PK).The Pd/CNT was ch...The dipping method was devised to deposit Pd onto carbon nanotube as supported catalyst(Pd/CNT) for the copolymerization of carbon monoxide(CO) and styrene(ST) towards the formation of polyketone(PK).The Pd/CNT was characterized by X-ray photoelectron spectroscopy(XPS),X-ray diffraction(XRD) and high-resolution transmission electron microscopy(HRTEM).The construction and crystallization property of PK were evaluated by Fourier transform infrared spectroscopy(FTIR),13C-nuclear magnetic resonance(NMR) and XRD,respectively.The catalyst showed excellent activity and reusability in promoting the fabrication of PK.It can be recycled 14 times with the highest total catalytic activity of 4 239.64 gPK/(gPd·h) at Pd content of 8.63wt%.The results indicate that the prepared catalyst is effective to catalyze the copolymerization of CO and styrene.展开更多
基金the support of the National Natural Science Foundation of China (20222809, 21978146)TsinghuaFoshan Innovation Special Fund (2021THFS0214)。
文摘Suzuki-Miyaura reaction of aryl halides with phenylboronic acid using a heterogeneous palladium catalyst based on activated carbons(AC) was systematically investigated in this work. Two different reaction modes(batch procedure and continuous-flow procedure) were used to study the variations of reaction processing. The heterogeneous catalysts presented excellent reactivity and recyclability for iodobenzene and bromobenzene substrates in batch mode, which can be attributed to stabilization of Pd nanoparticles by the thiol and amino groups on the AC supports. However, significant dehalogenation in the reaction mixture and Pd leaching from the heterogeneous catalysts were observed in continuous-flow mode.This unique phenomenon in continuous-flow mode resulted in a dramatic decline in reaction selectivity and durability of heterogeneous catalysts comparing with that of batch mode. In addition, the heterogeneous Pd catalysts with thiol-and amino-modified AC supports exhibited different reactivity and durability in batch and continuous-flow mode owing to the difference of interaction between Pd species and AC supports.
文摘A new zinc acetate catalyst which was prepared from modified activated carbon exhibited extreme activity towards the synthesis of vinyl acetate. The activated carbon was modified by nitric acid, vitriol and peroxyacetic acid (PAA). The effect on specific area, structure, pH and surface acidity groups of carders by modification was discussed. Amount of carbonyl and carboxyl groups in activated carbon was increased by peroxyacetic acid treatment. The productivity of the new catalyst was 14.58% higher than that of catalyst prepared using untreated activated carbon. The relationship between amount of carbonyl and carboxyl groups (m) and catalyst productivity (P) was P = 1.83 + 2.26 × 10^-3*e^3.17m. Reaction mechanism was proposed. C 2009 Liang Rong Feng. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.
基金Supported by the Science &Technical Ministry of China( No.2 0 0 1BA3 2 2 C) ,the Science &Technical Department ofFujian Province( No.2 0 0 0 F0 0 2 ) and the Science &Technical Development Foundation of Fuzhou U niversity( No.XKJQD-0 10 2 )
文摘Ten kinds of activated carbon from different raw materials were used as supports to prepare ruthenium catalysts. N_2 physisorption and CO chemisorption were carried out to investigate the pore size distribution and the ruthenium dispersion of the catalysts. It was found that the Ru dispersion of the catalyst was closely related to not only the texture of carbon support but also the purity of activated carbon. The activities of a series of the carbon-supported barium-promoted Ru catalysts for ammonia synthesis were measured at 425 ℃, 10 0 MPa and 10 000 h -1. The result shows that the same raw material activated carbon, with a high purity, high surface area, large pore volume and reasonable pore size distribution might disperse ruthenium and promoter sufficiently, which activated carbon as support, could be used to manufacture ruthenium catalyst with a high activity for ammonia synthesis. The different raw material activated carbon as the support would greatly influence the catalytic properties of the ruthenium catalyst for ammonia synthesis. For example, with coconut shell carbon(AC1) as the support, the ammonia concentration in the effluent was 13 17% over 4%Ru-BaO/AC1 catalyst, while with the desulfurized coal carbon(AC10) as the support, that in the effluent was only 1 37% over 4%Ru-BaO/AC10 catalyst.
文摘Platinum/carbon catalyst is one of the most important catalysts in hydrogenation of ortho-nitrochlorobenzene to 2,2′-dichlorohydrazobenzene. The preparation process and the supports of catalysts are studied in this paper. Raw materials and preparation procedure of the activated carbon have great influences on the compositions and surface structure of platinum/carbon catalysts. Platinum catalysts supported on activated carbon with high purity, high surface area, large pore volume and appropriate pore structure usually exhibit higher activities for hydrogenation of ortho-nitrochlorobenzene to 2,2′-dichlorohydrazobenzene. The catalyst prepared from H2PtCl6 with pH=3 shows greater catalytic performance than those prepared under other conditions.
基金financially supported by the National Natural Science Foundation of China (No. 21276086)
文摘In this paper, a low-cost activated carbon(AC) was prepared from deactivated resin catalyst(DRC) for methyl tert-butyl ether(MTBE) synthesis through carbonization and subsequent steam activation treatment. The activated carbon was characterized in detail. After loading various transition metals, including Cu^(2+), Ag+, Co^(2+), Ni^(2+), Zn^(2+), and Fe^(3+) via the ultrasonic-assisted impregnation method, a series of metal-loaded adsorbents(xM-AC) were obtained and their dimethyl sulfide(DMS) adsorption performance was investigated in a batch system. Among these adsorbents, 15Cu-AC presented a superior DMS adsorption capacity equating to 58.986 mg/g due to the formation of S-M(σ) bonds between Cu^(2+) and sulfur atoms of DMS as confirmed by the Raman spectra and kinetic study.
基金Open Fund of Key Laboratory of Ministry of Education for Metallurgical Emission Reduction and Comprehensive Utilization of Resources,China(No.JKF19-08)General Project of Science and Technology Plan of Yunnan Science and Technology Department,China(No.2019FB077)+1 种基金Industrialization Cultivation Project of Scientific Research Fund of Yunnan Provincial Department of Education,China(No.2016CYH07)Top Young Talents of Yunnan Ten Thousand Talents Plan,China(No.YNWR-QNBJ-2019-263)。
文摘To improve the denitrification performance of carbon-based materials for sintering flue gas,we prepared a composite catalyst comprising coconut shell activated carbon(AC)modified by thermal oxidation air.The microstructure,the specific surface area,the pore volume,the crystal structure,and functional groups presented in the prepared Cu2O/AC catalysts were thoroughly characterized.By using scanning electron microscopy(SEM),nitrogen adsorption/desorption isotherms,Fourier-transform infrared(FTIR)spectroscopy and X-ray diffractometry(XRD),the effects of Cu2O loading and calcination temperature on Cu2O/AC catalysts were investigated at low temperature(150℃).The research shows that Cu on the Cu2O/AC catalyst is in the form of Cu2O with good crystalline performance and is spherical and uniformly dispersed on the AC surface.The loading of Cu2O increases the active sites and the specific surface area of the reaction gas contact,which is conducive to the rapid progress of the carbon monoxide selective catalytic reduction(CO-SCR)reaction.When the loading of Cu2O was 8%and the calcination temperature was 500℃,the removal rate of NOx facilitated by the Cu2O/AC catalyst reached 97.9%.These findings provide a theoretical basis for understanding the denitrification of sintering flue gas.
基金supported by the National Natural Science Foundation of China (No. 21207039)the Natural Science Foundation of Guangdong Province, China (Grant No. S2011010000737)+2 种基金the Doctoral Fund of Ministry of Education of China (20110172120017)the Fundamental Research Funds for the Central Universities (Grant No. 2011zm 0048)the Key Laboratory of Renewable Energy and Gas Hydrate, Chinese Academy of Sciences (No. Y007K1)
文摘Activated carbon (AC) supported silver catalysts were prepared by incipient wetness impregnation method and their catalytic performance for CO preferential oxidation (PROX) in excess H2 was evaluated. Ag/AC catalysts, after reduction in H2 at low temperatures (≤200 ℃) following heat treatment in He at 200 ℃ (He200H200), exhibited the best catalytic properties. Temperature-programmed desorption (TPD), X-ray diffraction (XRD) and temperature-programmed reduction (TPR) results indicated that silver oxides were produced during heat treatment in He at 200 ℃ which were reduced to metal silver nanoparticles in H2 at low temperatures (≤200 ℃), simultaneously generating the adsorbed water/OH. CO conversion was enhanced 40% after water treatment following heat treatment in He at 600 ℃. These results imply that the metal silver nanoparticles are the active species and the adsorbed water/OH has noticeable promotion effects on CO oxidation. However, the promotion effect is still limited compared to gold catalysts under the similar conditions, which may be the reason of low selectivity to CO oxidation in PROX over silver catalysts. The reported Ag/AC-S-He catalyst after He200H200 treatment displayed similar PROX of CO reaction properties to Ag/SiO2. This means that Ag/AC catalyst is also an efficient low-temperature CO oxidation catalyst.
基金Project(50802034) supported by the National Natural Science Foundation of ChinaProject(11A093) supported by the Key Project Foundation by the Education Department of Hunan Province,China
文摘TiO2-coated activated carbon surface (TAs) composites were prepared by a sol-gel method with supercritical pretreatment. The photocatalytic degradation of acid yellow (AY) was investigated under UV radiation to estimate activity of catalysts and determine the kinetics. And the effects of parameters including the initial concentration of AY, light intensity and TiO2 content in catalysts were examined. The results indicate that TAs has a higher efficiency in decomposition of AY than P25, pure TiO2 particles as well as the mixture of TiO2 powder and active carbon. The photocatalytic degradation rate is found to follow the pseudo-first order kinetics with respect to the AY concentration. The new kinetic model fairly resembles the classic Langmuir-Hinshelwood equation, and the rate constant is proportional to the square root of the light intensity in a wide range. However, its absorption performance depends on the surface areas of catalysts. The model fits quite well with the experimental data and elucidates phenomena about the effects of the TiO2 content in TAs on the degradation rate.
基金The authors thank the financial support from the“Scientific and Technical Innovation Action Plan”Basic Research Field of the Shanghai Science and Technology Committee(19JC1410500)the Fundamental ResearchFunds for the Central Universities(2232018A3‐06)the National Natural Science Foundation of China(91645110).
文摘Zero or negative emissions of carbon dioxide(CO2)is the need of the times,as inexorable rising and alarming levels of CO2 in the atmosphere lead to global warming and severe climate change.The electrochemical CO2 reduction(eCO2R)to value‐added fuels and chemicals by using renewable electricity provides a cleaner and more sustainable route with economic benefits,in which the key is to develop clean and economical electrocatalysts.Carbon‐based catalyst materials possess desirable properties such as high offset potential for H2 evolution and chemical stability at the negative applied potential.Although it is still challenging to achieve highly efficient carbon‐based catalysts,considerable efforts have been devoted to overcoming the low selectivity,activity,and stability.Here,we summarize and discuss the recent progress in carbon‐based metal‐free catalysts including carbon nanotubes,carbon nanofibers,carbon nanoribbons,graphene,carbon nitride,and diamonds with an emphasis on their activity,product selectivity,and stability.In addition,the key challenges and future potential approaches for efficient eCO2R to low carbon‐based fuels are highlighted.For a good understanding of the whole history of the development of eCO2R,the CO2 reduction reactions,principles,and techniques including the role of electrolytes,electrochemical cell design and evaluation,product selectivity,and structural composition are also discussed.The metal/metal oxides decorated with carbon‐based electrocatalysts are also summarized.We aim to provide insights for further development of carbon‐based metal‐free electrocatalysts for CO2 reduction from the perspective of both fundamental understanding and technological applications in the future.
基金financial supports from the National Key R&D Program(2016YFB0301503)the National Natural Science Foundation of China(21776127,21921006)+2 种基金the Jiangsu Province Key R&D Program(BE2018009-2)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the State Key Laboratory of Materials-Oriented Chemical Engineering(ZK201902)。
文摘Selective phenol hydrogenation is a green approach to produce cyclohexanone.It still remains a big challenge to prepare efficient supports of the catalysts for the phenol hydrogenation via a simple and cost-effective approach.Herein,a facile approach was developed,i.e.,direct calcination of activated carbon(AC)under argon at high temperature,to improve its structure and surface properties.The modified AC materials were supported with Pd nanoparticles(NPs)to fabricate the Pd/C catalysts.The as-prepared Pd/C600 catalyst exhibits superior catalytic performance in the phenol hydrogenation,and its turnover frequency(TOF)value is 199.2 h^-1,1.31 times to that of Pd/C-raw.The Pd/C600 catalyst presents both better hydrophobicity and more structural defects,contributing to the improved dispersibility in the reaction solution(phenol-cyclohexane),the better Pd dispersion and the smaller Pd size,which result in the enhancement of the catalytic performance.Furthermore,the as-prepared Pd/C600 catalyst shows a good recyclability.
基金Supported by the National Science Fund for Excellent Young Scholars of China(No.51522405)
文摘Mercury-containing catalysts are widely used for acetylene hydrochlorination in China. Surface chemical characteristics of the fresh low-level mercury catalysts and spent low-level mercury catalysts were compared using multiple characterization methods. Pore blockage and active site coverage caused by chlorine-containing organics are responsible for catalyst deactivation. The reactions of chloroethylene and acetylene with chlorine free radical can generate chlorine-containing organic species. SiO_2 and functional groups on activated carbon contribute to the generation of carbon deposition. No significant reduction in the total content of mercury was observed after catalyst deactivation, while there was mercury loss locally. The irreversible loss of HgCl_2 caused by volatilization, reduction and poisoning of elements S and P also can lead to catalyst deactivation. Si, Al, Ca and Fe oxides are scattered on the activated carbon. Active components are still uniformly absorbed on activated carbon after catalyst deactivation.
基金We are grateful for financial support from the“Hundred Talents Program”of the Chinese Academy of Sciences and the“Young Talents Training Program”of the Shanghai Branch of the Chinese Academy of Sciences.We acknowledge the financial support from the National Science Youth Foundation of China(22202205)Xiamen City Natural Science Foundation of China(3502Z20227256)Fujian Provincial Natural Science Foundation of China(2022J01502).
文摘Metal-free carbon,as the most representative heterogeneous metal-free catalysts,have received considerable interests in electro-and thermo-catalytic reac-tions due to their impressive performance and sustainability.Over the past decade,well-designed carbon catalysts with tunable structures and heteroatom groups coupled with various characterization techniques have proposed numerous reaction mechanisms.However,active sites,key intermediate species,precise structure-activity relationships and dynamic evolution processes of carbon catalysts are still rife with controversies due to the monotony and limitation of used experimental methods.In this Review,we sum-marize the extensive efforts on model catalysts since the 2000s,particularly in the past decade,to overcome the influences of material and structure limitations in metal-free carbon catalysis.Using both nanomolecule model and bulk model,the real contribution of each alien species,defect and edge configuration to a series of fundamentally important reactions,such as thermocatalytic reactions,electrocatalytic reactions,were systematically studied.Combined with in situ techniques,isotope labeling and size control,the detailed reaction mechanisms,the precise 2D structure-activity relationships and the rate-determining steps were revealed at a molecular level.Furthermore,the outlook of model carbon catalysis has also been proposed in this work.
文摘The effect of potassium-decoration was studied on the activity of water-gas shift (WGS) reaction over the Co-Mo-based catalysts supported on active carbon (AC), which was prepared by incipient wetness co-impregnation method. The decoration of potassium on active carbon in advance enhances the activities of the CoMo-K/AC catalysts for WGS reaction. Highest activity (about 92% conversion) was obtained at 250 ? C for the catalyst with an optimum K 2 O/AC weight ratio in the range from 0.12 to 0.15. The catalysts were characterized by TPR and EPR, and the results show that activated carbon decorated with potassium makes Co-Mo species highly dispersed, and thus easily reduced and sulfurized. XRD results show that an appropriate content of potassium-decoration on active carbon supports may favors the formation of highly dispersed Co 9 S 8 -type structures which are situated on the edge or a site in contact with MoS 2 , K-Mo-O-S, Mo-S-K phase. Those active species are responsible for the high activity of CoMo-K/AC catalysts.
基金supported by the National Natural Science Foundation of China (21476145)~~
文摘The Pt decorated Ni/C nanocatalysts were prepared for hydrogen oxidation reaction(HOR) in fuel cell.By regulating the contents of Pt and Ni in the catalyst,both the composition and the structure affected the electrochemical catalytic characteristics of the Pt-Ni/C catalysts.When the Pt mass content was 3.1% percent and that of Ni was 13.9% percent,the Pt-Ni/C-3 catalyst exhibited a larger electrochemically active surface area and a higher exchange current density toward HOR than those of pure supported platinum sample.Our study demonstrates a feasible approach for designing the more efficient catalysts with lower content of noble metal for HOR in fuel cell.
基金supported by the Ministry of Science and Technology of China(Nos.2016YFA0204100 and 2016YFA0200200)the National Natural Science Foundation of China(Nos.21321002,21573220 and 21303191)the strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA09030100)
文摘Silica, alumina, and activated carbon supported iron-cobalt catalysts were prepared by incipient wetness impregnation. These catalysts have been characterized by BET, X-ray diffraction (XRD), and temperature-programmed reduction (TPR). Activity and selectivity of iron-cobalt supported on different carriers for CO hydrogenation were studied under the conditions of 1.5 MPa, 493 K, 630 h^-1, and H2/CO ratio of 1.6. The results indicate that the activity, C4 olefin/(C4 olefin+C4 paraffin) ratio, and C5 olefin/(C5 olefin+C5 paraffin) decrease in the order of Fe-Co/SiO2, Fe-Co/AC1, Fe-Co/Al2O3 and Fe- Co/AC2. The activity of Fe-Co/SiO2 reached a maximum. The results of TPR show that the Fe-Co/SiO2 catalyst is to some extent different. XRD patterns show that the Fe-Co/SiO2 catalyst differs significantly from the others; it has two diffraction peaks. The active spinel phase is correlated with the supports.
基金supported by the National Natural Science Fundation of China(U1361202,51276120)~~
文摘The CO2reforming of CH4is studied over MgO‐promoted Ni catalysts,which were supported on alumina prepared from hydrotalcite.This presents an improved stability compared with non‐promoted catalysts.The introduction of the MgO promoter was achieved through the‘‘memory effect’’of the Ni‐Al hydrotalcite structure,and ICP‐MS confirmed that only0.42wt.%of Mg2+ions were added into the Ni‐Mg/Al catalyst.Although no differences in the Ni particle size and basicity strength were observed,the Ni‐Mg/Al catalyst showed a higher catalytic stability than the Ni/Al catalyst.A series of surface reaction experiments were used and showed that the addition of a MgO promoter with low concentration can promote CO2dissociation to form active surface oxygen arising from the formation of the Ni‐MgO interface sites.Therefore,the carbon‐resistance promotion by nature was suggested to contribute to an oxidative environment around Ni particles,which would increase the conversion of carbon residues from CH4cracking to yield CO on the Ni metal surface.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved.
基金This work was supported by the National Nature Science Foundation of China (No.29903003).
文摘The direct carbonylation of methanol, without any halide in the feed as apromoter, is presented. A series of Mo catalysts supported on activated carbon, γ-Al_2O_3 and SiO_2were prepared. The results show that the support greatly affects the Mo catalyst in the directvapor-phase carbonylation of methanol, and activated carbon is the best supports of the investigatedsupports. In addition, the relationships between adsorptions of NH_3 and CO and carbonylation ofmethanol were investigated. A novel sulfided Mo/C catalyst had high activity and selectivity for thevapor phase carbonylation of methanol to methyl acetate without the addition of a CH_3I promoter tothe feed. The reaction conditions were optimized at a reaction temperature of 573 K, a methanolconcentration of 23 mol% and a carbon monoxide space velocity of 3,000 L/(kg·h). Under theseoptimal conditions a methanol conversion of 50%, carbonylation selectivity of 80 rnol%, andspace-time yield of 8.0 mol/(kg·h) were obtained. The active phase of this novel sulfided Mo/Ccatalyst is the non-crystalline phase, and the active component is present as MoS_(2.5) on thesurface of the activated carbon.
文摘The main problem in an efficient Zn(CH3COO)2/AC (AC-activated carbon) catalyst preparation is the achievement of uniform distribution of highly dispersed salt component on the activated carbon (AC) surface. The solution of this problem is modification of the AC by hydrogen peroxide (H202) oxidation of the surface and treatment of AC with acetic acid as well as special methods of salt deposition and catalyst drying. The investigations of these ways of AC surface modification (treatment of AC with acetic acid and H2O2) have demonstrated the obtained AC to have both an increased adsorption capacity as to Zn(OAc)2 and optimum volumes of meso- and micro-pores as well as high catalyst activity in vinyl acetate (VA) synthesis. The characteristics of supports and catalysts were found out by benzene, water and acetic acid vapors adsorption. The distribution of the salt on the AC surface was studied by small-angle X-ray scattering (SAXS), by scanning electron microscopy (SEM) and X-ray micro-analysis (XMA). The catalysts were tested in vinyl acetate synthesis in flow-bed isothermal reactor by cyclic method at 175, 205 and 230℃.
基金Supported by the National Natural Science Foundation of China(No.20476080)Tianjin Natural Science Foundation(No.07JCYBJC00600)
文摘The dipping method was devised to deposit Pd onto carbon nanotube as supported catalyst(Pd/CNT) for the copolymerization of carbon monoxide(CO) and styrene(ST) towards the formation of polyketone(PK).The Pd/CNT was characterized by X-ray photoelectron spectroscopy(XPS),X-ray diffraction(XRD) and high-resolution transmission electron microscopy(HRTEM).The construction and crystallization property of PK were evaluated by Fourier transform infrared spectroscopy(FTIR),13C-nuclear magnetic resonance(NMR) and XRD,respectively.The catalyst showed excellent activity and reusability in promoting the fabrication of PK.It can be recycled 14 times with the highest total catalytic activity of 4 239.64 gPK/(gPd·h) at Pd content of 8.63wt%.The results indicate that the prepared catalyst is effective to catalyze the copolymerization of CO and styrene.