The geological hazards, such as water inrush and mud outburst, are easily induced by the high water pressure caverns ahead of a karst tunnel face. Therefore, it is a pivotal issue to determine the reserved thickness o...The geological hazards, such as water inrush and mud outburst, are easily induced by the high water pressure caverns ahead of a karst tunnel face. Therefore, it is a pivotal issue to determine the reserved thickness of rock plug during the construction of tunnels. The limit analysis principle is employed to analyze the safe thickness from the point of energy dissipation, and the nonlinear and non-associated characteristics of geotechnical materials are both considered. On the basis of a plane failure pattern of rock plug, the expressions of detaching curve and rock plug thickness are derived. The effect of each parameter on the safe thickness of rock plug is discussed in detail, which interprets the corresponding failure scope of rock plug. The obtained results indicate that the thickness of rock plug is highly influenced by the nonlinear dilatancy coefficient and the nonlinear coefficient. The proposed method is validated by a comparison of the calculated results with those of the engineering project of the "526 karst cavern" of Yunwushan tunnel. This proposed method can provide reference basis for the design and excavation of karst tunnels in the future.展开更多
Solutions for radial flow of a Bingham fluid are analyzed in this paper.It aims to eliminate confusions in the literature concerning the plug flow region in different solutions for analysis and design of grouting in r...Solutions for radial flow of a Bingham fluid are analyzed in this paper.It aims to eliminate confusions in the literature concerning the plug flow region in different solutions for analysis and design of grouting in rock fractures.The analyses based on the force balance equation reveal that the plug flow region in Bingham radial flow is independent of the fracture radius,and is not a growth function adapted from the solution of one-dimensional(1D)slit flow according to‘similarity’.Based on the shear stress distribution,we analytically proposed that a non-uniform plug flow region cannot exist.The Bingham fluid(grout)penetration and flowrate evolution as functions of grouting time are given using the correct expression for the plug flow region.The radius-independent plug flow region and the presented flowrate evolution equation are also verified numerically.For radial flow,the relative penetration length is equal to the relative width of plug flow region,which is the same as that for 1D channel flow.Discrepancies in analytical solutions for grout penetration and flowrate evolution were also illustrated.The clarification of the plug flow region and evaluation of discrepancies in analytical solutions presented in this work could simplify modeling and design of grouting in rock engineering applications.展开更多
The transport of liquid plugs in microchannels is very important for many applications such as in medical treatments in airways and in extraction of oil from porous rocks.A plug of wetting and non-wetting liquids driv...The transport of liquid plugs in microchannels is very important for many applications such as in medical treatments in airways and in extraction of oil from porous rocks.A plug of wetting and non-wetting liquids driven by a constant pressure difference through a T-shaped microchannel is studied numerically with lattice Boltzmann(LB) method.A two-phase flow LB model based on field mediators is built.Three typical flow patterns(blocking,rupture and splitting flow) of plug flow are obtained with different driving pressures.It is found that it becomes difficult for a plug with short initial plug length to leave the microchannel;the flow pattern of plug transport varies with the contact angle,especially from wetting to nonwetting;with the increase of interfacial tension,the front interface of plug moves faster;the front and rear interfaces of the plug with small viscosity ratio move faster in the microchannel than those of the plug with large viscosity ratio.The study is helpful to provide theoretical data for the design and scale-up of liquid-liquid reactors and separators.展开更多
Residence time distribution (RTD) analysis of liquid phase was conducted in an internal airlift loop reactor (AL) and a bubble column (BC) with the tracer response technique. These data were simulated and compared thr...Residence time distribution (RTD) analysis of liquid phase was conducted in an internal airlift loop reactor (AL) and a bubble column (BC) with the tracer response technique. These data were simulated and compared through several flow mixing models. The modeling results of two-parameter model indicated that there were higher ratio of full mixing zones and lower ratio of bypass flow in AL than in BC. Then a completely mixed-plug flow parallel combined (four-parameter) model was established. Modeling results show that it is more precise and more obvious than two-parameter model.展开更多
According to the observational data of viscous debris flows with hyper-concentration, debris flows can be classified into three types:high-viscous, viscous, and sub-viscous debris flows.Distinct formation mechanism of...According to the observational data of viscous debris flows with hyper-concentration, debris flows can be classified into three types:high-viscous, viscous, and sub-viscous debris flows.Distinct formation mechanism of different graded bedding structures in deposits of viscous debris flows was analyzed in this paper by using their yield-stress ratio and flow plug ratio.This paper specially analyzed the effect of Weissenberg which the gravels in squirm condition of hyper-concentration viscous flows would tend to move vertically, and the formation mechanism of the gravels accumulated at surface was also studied.The analysis in this paper can establish a foundation for the studies on differentiation of bedding structures of debris flow deposits and studies on dynamic parameters of debris flows.展开更多
When the stagnation temperature of a perfect gas increases, the specific heats and their ratio do not remain constant any more and start to vary with this temperature. The gas remains perfect, its state equation remai...When the stagnation temperature of a perfect gas increases, the specific heats and their ratio do not remain constant any more and start to vary with this temperature. The gas remains perfect, its state equation remains always valid, except it will name in more calorically imperfect gas or gas at High Temperature. The goal of this research is to trace the profiles of the supersonic plug nozzle when this stagnation temperature is taken into account, lower than the threshold of dissociation of the molecules, by using the new formula of the Prandtl Meyer function, and to have for each exit Mach number, several nozzles shapes by changing the value of this temperature. A study on the error given by the PG (perfect gas) model compared to our model at high temperature is presented. The comparison is made with the case of a calorically perfect gas aiming to give a limit of application of this model. The application is for the air.展开更多
Since the diesel products from paraffin-based Daqing crude oil showed low sensitivity to certain commercial diesel pour point depressant (PPDs) that resulted from the high content of paraffin, certain poly-acrylic a...Since the diesel products from paraffin-based Daqing crude oil showed low sensitivity to certain commercial diesel pour point depressant (PPDs) that resulted from the high content of paraffin, certain poly-acrylic acid derivatives (PADE) with-COOR, -COOH,-CONHR, and -COO-NH3^+R groups by molecular design on the mechanics of diesel; PPDs were synthesized and evaluated as cold flow improver for Daqing 0^# diesel in this paper. The pure PADE was superior to the commercial PPDs and displayed a substantial ability of wax crystals dispersion. There was a synergistic effect among the PADE and T1804 and secondary amine. The synergism clearly improved the low temperature performance of Daqing diesel products and could reduce the cold filter plugging point of 0^# diesel by 6-7 ℃.展开更多
Several applications such as liquid-liquid extraction in micro-fluidic devices are concerned with the flow of two immiscible liquid phases. The commonly observed flow regimes in these systems are slug-flow and stratif...Several applications such as liquid-liquid extraction in micro-fluidic devices are concerned with the flow of two immiscible liquid phases. The commonly observed flow regimes in these systems are slug-flow and stratified flow. The latter regime in micro-channels has the inherent advantage that separation of the two liquids at the exit is efficient. Recently extraction in a stratified counter-current flow has been studied experimentally and it has been shown to be more efficient than co-current flow. An analytical as well as a numerical method to determine the steady-state solution of the corresponding convection-diffusion equation for the two flow-fields is presented. It is shown that the counter-current process is superior to the co-current process for the same set of parameters and operating conditions. A simplified model is proposed to analyse the process when diffusion in the transverse direction is not rate limiting. Different approaches to determining mass transfer coefficient are compared. The concept of log mean temperature difference used in design of heat exchangers is extended to describe mass transfer in the system.展开更多
基金Project(2013CB036004) supported by the National Basic Research Program of ChinaProjects(51378510,51308072) supported by National Natural Science Foundation of ChinaProject(CX2014B069) supported by the Hunan Provincial Innovation Foundation for Postgraduate,China
文摘The geological hazards, such as water inrush and mud outburst, are easily induced by the high water pressure caverns ahead of a karst tunnel face. Therefore, it is a pivotal issue to determine the reserved thickness of rock plug during the construction of tunnels. The limit analysis principle is employed to analyze the safe thickness from the point of energy dissipation, and the nonlinear and non-associated characteristics of geotechnical materials are both considered. On the basis of a plane failure pattern of rock plug, the expressions of detaching curve and rock plug thickness are derived. The effect of each parameter on the safe thickness of rock plug is discussed in detail, which interprets the corresponding failure scope of rock plug. The obtained results indicate that the thickness of rock plug is highly influenced by the nonlinear dilatancy coefficient and the nonlinear coefficient. The proposed method is validated by a comparison of the calculated results with those of the engineering project of the "526 karst cavern" of Yunwushan tunnel. This proposed method can provide reference basis for the design and excavation of karst tunnels in the future.
基金funding for this study is provided by the BeFo Rock Engineering Research Foundation(Grant No.392)。
文摘Solutions for radial flow of a Bingham fluid are analyzed in this paper.It aims to eliminate confusions in the literature concerning the plug flow region in different solutions for analysis and design of grouting in rock fractures.The analyses based on the force balance equation reveal that the plug flow region in Bingham radial flow is independent of the fracture radius,and is not a growth function adapted from the solution of one-dimensional(1D)slit flow according to‘similarity’.Based on the shear stress distribution,we analytically proposed that a non-uniform plug flow region cannot exist.The Bingham fluid(grout)penetration and flowrate evolution as functions of grouting time are given using the correct expression for the plug flow region.The radius-independent plug flow region and the presented flowrate evolution equation are also verified numerically.For radial flow,the relative penetration length is equal to the relative width of plug flow region,which is the same as that for 1D channel flow.Discrepancies in analytical solutions for grout penetration and flowrate evolution were also illustrated.The clarification of the plug flow region and evaluation of discrepancies in analytical solutions presented in this work could simplify modeling and design of grouting in rock engineering applications.
基金Supported by the National Basic Research Program of China(2012CB224806)the National Natural Science Foundation of China(20990224,21276256)+1 种基金the National Natural Science Fund for Distinguished Young Scholars(21025627)the National High Technology Research and Development Program of China(2012AA03A606)
文摘The transport of liquid plugs in microchannels is very important for many applications such as in medical treatments in airways and in extraction of oil from porous rocks.A plug of wetting and non-wetting liquids driven by a constant pressure difference through a T-shaped microchannel is studied numerically with lattice Boltzmann(LB) method.A two-phase flow LB model based on field mediators is built.Three typical flow patterns(blocking,rupture and splitting flow) of plug flow are obtained with different driving pressures.It is found that it becomes difficult for a plug with short initial plug length to leave the microchannel;the flow pattern of plug transport varies with the contact angle,especially from wetting to nonwetting;with the increase of interfacial tension,the front interface of plug moves faster;the front and rear interfaces of the plug with small viscosity ratio move faster in the microchannel than those of the plug with large viscosity ratio.The study is helpful to provide theoretical data for the design and scale-up of liquid-liquid reactors and separators.
文摘Residence time distribution (RTD) analysis of liquid phase was conducted in an internal airlift loop reactor (AL) and a bubble column (BC) with the tracer response technique. These data were simulated and compared through several flow mixing models. The modeling results of two-parameter model indicated that there were higher ratio of full mixing zones and lower ratio of bypass flow in AL than in BC. Then a completely mixed-plug flow parallel combined (four-parameter) model was established. Modeling results show that it is more precise and more obvious than two-parameter model.
基金supported by the National Natural Science Foundation of China (Grant No.40671026)
文摘According to the observational data of viscous debris flows with hyper-concentration, debris flows can be classified into three types:high-viscous, viscous, and sub-viscous debris flows.Distinct formation mechanism of different graded bedding structures in deposits of viscous debris flows was analyzed in this paper by using their yield-stress ratio and flow plug ratio.This paper specially analyzed the effect of Weissenberg which the gravels in squirm condition of hyper-concentration viscous flows would tend to move vertically, and the formation mechanism of the gravels accumulated at surface was also studied.The analysis in this paper can establish a foundation for the studies on differentiation of bedding structures of debris flow deposits and studies on dynamic parameters of debris flows.
文摘When the stagnation temperature of a perfect gas increases, the specific heats and their ratio do not remain constant any more and start to vary with this temperature. The gas remains perfect, its state equation remains always valid, except it will name in more calorically imperfect gas or gas at High Temperature. The goal of this research is to trace the profiles of the supersonic plug nozzle when this stagnation temperature is taken into account, lower than the threshold of dissociation of the molecules, by using the new formula of the Prandtl Meyer function, and to have for each exit Mach number, several nozzles shapes by changing the value of this temperature. A study on the error given by the PG (perfect gas) model compared to our model at high temperature is presented. The comparison is made with the case of a calorically perfect gas aiming to give a limit of application of this model. The application is for the air.
文摘Since the diesel products from paraffin-based Daqing crude oil showed low sensitivity to certain commercial diesel pour point depressant (PPDs) that resulted from the high content of paraffin, certain poly-acrylic acid derivatives (PADE) with-COOR, -COOH,-CONHR, and -COO-NH3^+R groups by molecular design on the mechanics of diesel; PPDs were synthesized and evaluated as cold flow improver for Daqing 0^# diesel in this paper. The pure PADE was superior to the commercial PPDs and displayed a substantial ability of wax crystals dispersion. There was a synergistic effect among the PADE and T1804 and secondary amine. The synergism clearly improved the low temperature performance of Daqing diesel products and could reduce the cold filter plugging point of 0^# diesel by 6-7 ℃.
文摘Several applications such as liquid-liquid extraction in micro-fluidic devices are concerned with the flow of two immiscible liquid phases. The commonly observed flow regimes in these systems are slug-flow and stratified flow. The latter regime in micro-channels has the inherent advantage that separation of the two liquids at the exit is efficient. Recently extraction in a stratified counter-current flow has been studied experimentally and it has been shown to be more efficient than co-current flow. An analytical as well as a numerical method to determine the steady-state solution of the corresponding convection-diffusion equation for the two flow-fields is presented. It is shown that the counter-current process is superior to the co-current process for the same set of parameters and operating conditions. A simplified model is proposed to analyse the process when diffusion in the transverse direction is not rate limiting. Different approaches to determining mass transfer coefficient are compared. The concept of log mean temperature difference used in design of heat exchangers is extended to describe mass transfer in the system.