期刊文献+
共找到108篇文章
< 1 2 6 >
每页显示 20 50 100
Enhanced Deep Reinforcement Learning Strategy for Energy Management in Plug-in Hybrid Electric Vehicles with Entropy Regularization and Prioritized Experience Replay
1
作者 Li Wang Xiaoyong Wang 《Energy Engineering》 EI 2024年第12期3953-3979,共27页
Plug-in Hybrid Electric Vehicles(PHEVs)represent an innovative breed of transportation,harnessing diverse power sources for enhanced performance.Energy management strategies(EMSs)that coordinate and control different ... Plug-in Hybrid Electric Vehicles(PHEVs)represent an innovative breed of transportation,harnessing diverse power sources for enhanced performance.Energy management strategies(EMSs)that coordinate and control different energy sources is a critical component of PHEV control technology,directly impacting overall vehicle performance.This study proposes an improved deep reinforcement learning(DRL)-based EMSthat optimizes realtime energy allocation and coordinates the operation of multiple power sources.Conventional DRL algorithms struggle to effectively explore all possible state-action combinations within high-dimensional state and action spaces.They often fail to strike an optimal balance between exploration and exploitation,and their assumption of a static environment limits their ability to adapt to changing conditions.Moreover,these algorithms suffer from low sample efficiency.Collectively,these factors contribute to convergence difficulties,low learning efficiency,and instability.To address these challenges,the Deep Deterministic Policy Gradient(DDPG)algorithm is enhanced using entropy regularization and a summation tree-based Prioritized Experience Replay(PER)method,aiming to improve exploration performance and learning efficiency from experience samples.Additionally,the correspondingMarkovDecision Process(MDP)is established.Finally,an EMSbased on the improvedDRLmodel is presented.Comparative simulation experiments are conducted against rule-based,optimization-based,andDRL-based EMSs.The proposed strategy exhibitsminimal deviation fromthe optimal solution obtained by the dynamic programming(DP)strategy that requires global information.In the typical driving scenarios based onWorld Light Vehicle Test Cycle(WLTC)and New European Driving Cycle(NEDC),the proposed method achieved a fuel consumption of 2698.65 g and an Equivalent Fuel Consumption(EFC)of 2696.77 g.Compared to the DP strategy baseline,the proposed method improved the fuel efficiency variances(FEV)by 18.13%,15.1%,and 8.37%over the Deep QNetwork(DQN),Double DRL(DDRL),and original DDPG methods,respectively.The observational outcomes demonstrate that the proposed EMS based on improved DRL framework possesses good real-time performance,stability,and reliability,effectively optimizing vehicle economy and fuel consumption. 展开更多
关键词 plug-in hybrid electric vehicles deep reinforcement learning energy management strategy deep deterministic policy gradient entropy regularization prioritized experience replay
下载PDF
The Future Trend of E-Mobility in Terms of Battery Electric Vehicles and Their Impact on Climate Change: A Case Study Applied in Hungary
2
作者 Mohamad Ali Saleh Saleh 《American Journal of Climate Change》 2024年第2期83-102,共20页
The transportation sector is responsible for 25% of the total Carbon dioxide (CO2) emissions, whereas 60.6% of this sector represents small and medium passenger cars. However, as noted by the European Union Long-term ... The transportation sector is responsible for 25% of the total Carbon dioxide (CO2) emissions, whereas 60.6% of this sector represents small and medium passenger cars. However, as noted by the European Union Long-term strategy, there are two ways to reduce the amount of CO2 emissions in the transportation sector. The first way is characterized by creating more efficient vehicles. In contrast, the second way is characterized by changing the fuel used. The current study addressed the second way, changing the fuel type. The study examined the potential of battery electric vehicles (BEVs) as an alternative fuel type to reduce CO2 emissions in Hungarys transportation sector. The study used secondary data retrieved from Statista and stata.com to analyze the future trends of BEVs in Hungary. The results showed that the percentage of BEVs in Hungary in 2022 was 0.4% compared to the total number of registered passenger cars, which is 3.8 million. The simple exponential smoothing (SES) time series forecast revealed that the number of BEVs is expected to reach 84,192 in 2030, indicating a percentage increase of 2.21% in the next eight years. The study suggests that increasing the number of BEVs is necessary to address the negative impact of CO2 emissions on society. The Hungarian Ministry of Innovation and Technologys strategy to reduce the cost of BEVs may increase the percentage of BEVs by 10%, resulting in a potential average reduction of 76,957,600 g/km of CO2 compared to gasoline, diesel, hybrid electric vehicles (HEVs), and plug-in hybrid vehicles (PHEVs). 展开更多
关键词 Battery electric vehicles (BEVS) GASOLINE DIESEL hybrid electric vehicles (HEVs) plug-in hybrid vehicles (phevs) Climate Change Carbon Dioxide (CO2) Emissions
下载PDF
Energy Control of Plug-In Hybrid Electric Vehicles Using Model Predictive Control With Route Preview 被引量:4
3
作者 Yang Zhao Yanguang Cai Qiwen Song 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第12期1948-1955,共8页
The paper proposes an adoption of slope,elevation,speed and route distance preview to achieve optimal energymanagement of plug-in hybrid electric vehicles(PHEVs).Theapproach is to identify route features from historic... The paper proposes an adoption of slope,elevation,speed and route distance preview to achieve optimal energymanagement of plug-in hybrid electric vehicles(PHEVs).Theapproach is to identify route features from historical and real-time traffic data,in which information fusion model and trafficprediction model are used to improve the information accuracy.Then,dynamic programming combined with equivalent con-sumption minimization strategy is used to compute an optimalsolution for real-time energy management.The solution is thereference for PHEV energy management control along the route.To improve the system's ability of handling changing situation,the study further explores predictive control model in the real-time control of the energy.A simulation is performed to modelPHEV under above energy control strategy with route preview.The results show that the average fuel consumption of PHEValong the previewed route with model predictive control(MPC)strategy can be reduced compared with optimal strategy andbase control strategy. 展开更多
关键词 Energy management model predictive control(MPC) optimal control plug-in hybrid electric vehicle(phev)
下载PDF
An optimal energy management development for various configuration of plug-in and hybrid electric vehicle 被引量:8
4
作者 Morteza Montazeri-Gh Mehdi Mahmoodi-K 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1737-1747,共11页
Due to soaring fuel prices and environmental concerns, hybrid electric vehicle(HEV) technology attracts more attentions in last decade. Energy management system, configuration of HEV and traffic conditions are the mai... Due to soaring fuel prices and environmental concerns, hybrid electric vehicle(HEV) technology attracts more attentions in last decade. Energy management system, configuration of HEV and traffic conditions are the main factors which affect HEV's fuel consumption, emission and performance. Therefore, optimal management of the energy components is a key element for the success of a HEV. An optimal energy management system is developed for HEV based on genetic algorithm. Then, different powertrain system component combinations effects are investigated in various driving cycles. HEV simulation results are compared for default rule-based, fuzzy and GA-fuzzy controllers by using ADVISOR. The results indicate the effectiveness of proposed optimal controller over real world driving cycles. Also, an optimal powertrain configuration to improve fuel consumption and emission efficiency is proposed for each driving condition. Finally, the effects of batteries in initial state of charge and hybridization factor are investigated on HEV performance to evaluate fuel consumption and emissions. Fuel consumption average reduction of about 14% is obtained for optimal configuration data in contrast to default configuration. Also results indicate that proposed controller has reduced emission of about 10% in various traffic conditions. 展开更多
关键词 plug-in and hybrid electric vehicle energy management CONFIGURATION genetic fuzzy controller fuel consumption EMISSION
下载PDF
Novel flexible hybrid electric system and adaptive online-optimal energy management controller for plug-in hybrid electric vehicles 被引量:4
5
作者 何建辉 杨林 +2 位作者 羌嘉曦 陈自强 朱建新 《Journal of Central South University》 SCIE EI CAS 2012年第4期962-973,共12页
In order to achieve the improvement of the driving comfort and energy efficiency,an new e-CVT flexible full hybrid electric system(E2FHS) is proposed,which uses an integrated main drive motor and generator to take the... In order to achieve the improvement of the driving comfort and energy efficiency,an new e-CVT flexible full hybrid electric system(E2FHS) is proposed,which uses an integrated main drive motor and generator to take the place of the original automatic or manual transmission to realize the functions of continuously variable transmission(e-CVT).The design and prototype realization of the E2FHS system for a plug-in hybrid vehicle(PHEV) is performed.In order to analyze and optimize the parameters and the power flux between different parts of the E2FHS,simulation software is developed.Especially,in order to optimize the performance of the energy economy improvement of the E2FHS,the effect of the different energy management controllers is investigated,and an adaptive online-optimal energy management controller for the E2FHS is built and validated by the prototype PHEV. 展开更多
关键词 e-CVT flexible full hybrid electric system adaptive online-optimal controller plug-in hybrid vehicle
下载PDF
Simulation research of energy management strategy for dual mode plug-in hybrid electrical vehicles 被引量:1
6
作者 李训明 liu hui +3 位作者 xin hui-bin yan zheng-jun zhang zhi-peng liu bei 《Journal of Chongqing University》 CAS 2017年第2期59-71,共13页
In this paper, a plug-in hybrid electrical vehicle(PHEV) is taken as the research object, and its dynamic performance and economic performance are taken as the research goals. Battery charge-sustaining(CS) period is d... In this paper, a plug-in hybrid electrical vehicle(PHEV) is taken as the research object, and its dynamic performance and economic performance are taken as the research goals. Battery charge-sustaining(CS) period is divided into power mode and economy mode. Energy management strategy designing methods of power mode and economy mode are proposed. Maximum velocity, acceleration performance and fuel consumption are simulated during the CS period in the AVL CRUISE simulation environment. The simulation results indicate that the maximum velocity and acceleration time of the power mode are better than those in the economy mode. Fuel consumption of the economy mode is better than that in the power mode. Fuel consumption of PHEV during the CS period is further improved by using the methods proposed in this paper, and this is meaningful for research and development of PHEV. 展开更多
关键词 plug-in hybrid electrical vehicle power mode eco mode energy management strategy model and simulation
下载PDF
Analysis of Hybrid Rechargeable Energy Storage Systems in Series Plug-In Hybrid Electric Vehicles Based on Simulations
7
作者 Karel Fleurbaey Noshin Omar +2 位作者 Mohamed El Baghdadi Jean-Marc Timmermans Joeri Van Mierlo 《Energy and Power Engineering》 2014年第8期195-211,共17页
In this paper, an extended analysis of the performance of different hybrid Rechargeable Energy Storage Systems (RESS) for use in Plug-in Hybrid Electric Vehicle (PHEV) with a series drivetrain topology is analyzed, ba... In this paper, an extended analysis of the performance of different hybrid Rechargeable Energy Storage Systems (RESS) for use in Plug-in Hybrid Electric Vehicle (PHEV) with a series drivetrain topology is analyzed, based on simulations with three different driving cycles. The investigated hybrid energy storage topologies are an energy optimized lithium-ion battery (HE) in combination with an Electrical Double-Layer Capacitor (EDLC) system, in combination with a power optimized lithium-ion battery (HP) system or in combination with a Lithium-ion Capacitor (LiCap) system, that act as a Peak Power System. From the simulation results it was observed that hybridization of the HE lithium-ion based energy storage system resulted from the three topologies in an increased overall energy efficiency of the RESS, in an extended all electric range of the PHEV and in a reduced average current through the HE battery. The lowest consumption during the three driving cycles was obtained for the HE-LiCap topology, where fuel savings of respectively 6.0%, 10.3% and 6.8% compared with the battery stand-alone system were achieved. The largest extension of the range was achieved for the HE-HP configuration (17% based on FTP-75 driving cycle). HP batteries however have a large internal resistance in comparison to EDLC and LiCap systems, which resulted in a reduced overall energy efficiency of the hybrid RESS. Additionally, it was observed that the HP and LiCap systems both offer significant benefits for the integration of a peak power system in the drivetrain of a Plug-in Hybrid Electric Vehicle due to their low volume and weight in comparison to that of the EDLC system. 展开更多
关键词 plug-in hybrid electric vehicle hybrid ENERGY Storage System HIGH ENERGY BATTERY HIGH Power BATTERY electrical DOUBLE-LAYER CAPACITOR Lithium-Ion CAPACITOR
下载PDF
Parameters matching and optimization of parallel hybrid electric vehicle powertrain 被引量:7
8
作者 陈勇 Chen Xiaokai Lin Yi 《High Technology Letters》 EI CAS 2010年第1期34-38,共5页
Aiming at the development of parallel hybrid electric vehicle (PHEV) powertrain, parameter matching and optimization are presented, According to the performance of PHEV, the optimization range of engine, motor, driv... Aiming at the development of parallel hybrid electric vehicle (PHEV) powertrain, parameter matching and optimization are presented, According to the performance of PHEV, the optimization range of engine, motor, driveline gear ratio and battery parameters are determined. And then a two-level optimization problem is formulated based on analytical target cascading (ATC). At the system level, the optimization of the whole vehicle fuel economy is carried out, while the tractive performance is defined as the constraints. The optimized parameters are cascaded to the subsystem as the optimization targets. At the subsystem level, the final drive and transmission design are optimized to make the ratios as close to the targets as possible. The optimization result shows that the fuel economy had improved significantly, while the tractive performance maintains the former level. 展开更多
关键词 parallel hybrid electric vehicle phev parameters matching OPTIMIZATION analytical target cascading (ATC) POWERTRAIN
下载PDF
OPTIMAL TORQUE CONTROL STRATEGY FOR PARALLEL HYBRID ELECTRIC VEHICLE WITH AUTOMATIC MECHANICAL TRANSMISSION 被引量:12
9
作者 GU Yanchun YIN Chengliang ZHANG Jianwu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第1期16-20,共5页
In parallel hybrid electrical vehicle (PHEV) equipped with automatic mechanical transmission (AMT), the driving smoothness and the clutch abrasion are the primary considerations for powertrain control during gears... In parallel hybrid electrical vehicle (PHEV) equipped with automatic mechanical transmission (AMT), the driving smoothness and the clutch abrasion are the primary considerations for powertrain control during gearshift and clutch operation. To improve these performance indexes of PHEV, a coordinated control system is proposed through the analyzing of HEV powertrain dynamic characteristics. Using the method of minimum principle, the input torque of transmission is optimized to improve the driving smoothness of vehicle. Using the methods of fuzzy logic and fuzzy-PID, the engaging speed of clutch and the throttle opening of engine are manipulated to ensure the smoothness of clutch engagement and reduce the abrasion of clutch friction plates. The motor provides the difference between the required input torque of transmission and the torque transmitted through clutch plates. Results of simulation and experiments show that the proposed control strategy performs better than the contrastive control system, the smoothness of driving and the abrasion of clutch can be improved simultaneously. 展开更多
关键词 Parallel hybrid electric vehicle phev Automatic mechanical transmission (AMT) Driving smoothness Clutch abrasion Optimal control Fuzzy logic control
下载PDF
Study on load performance of electric motor system used in hybrid electric vehicle
10
作者 李雯 Zhang Chengning +1 位作者 Wang Zhifu Gao Lei 《High Technology Letters》 EI CAS 2010年第1期63-66,共4页
The performance of the power assist, global optimization solved by dynamic programming (DP) method, Chery and Insight control strategies are analyzed using the mild parallel hybrid electric vehicle (PHEV) model ba... The performance of the power assist, global optimization solved by dynamic programming (DP) method, Chery and Insight control strategies are analyzed using the mild parallel hybrid electric vehicle (PHEV) model based on Insight structure. The influence of the four control strategies to the load power of the electric motor system used on parallel hybrid electric vehicle is studied. It is found that 80 percent of the motor load power points are under 1/5 of the electric peak power. The motor load power of the power assist control strategy is distributed in the widest range during generating operation, and the motor load power of the global optimization control strategy has the smallest one. 展开更多
关键词 parallel hybrid electric vehicle phev management strategy motor load power
下载PDF
Applications of Serial-Parallel Compensated Resonant Topology in Wireless Charger System Used in Electric Vehicles
11
作者 FU Yongsheng LEI Ming +1 位作者 GAO Leilei ZHOU Gang 《Journal of Donghua University(English Edition)》 EI CAS 2019年第1期15-22,共8页
There are lots of factors that can influence the wireless charging efficiency in practice, such as misalignment and air-gap difference, which can also change all the charging parameters. To figure out the relationship... There are lots of factors that can influence the wireless charging efficiency in practice, such as misalignment and air-gap difference, which can also change all the charging parameters. To figure out the relationship between those facts and system, this paper presents a serial-parallel compensated(SPC) topology for electric vehicle/plug-in hybrid electric vehicle(EV/PHEV) wireless charger and provides all the parameters changing with corresponding curves. An ANSYS model is built to extract the coupling coefficient of coils. When the system is works at constant output power, the scan frequency process can be applied to wireless power transfer(WPT) and get the resonant frequency. In this way, it could determine the best frequency for system to achieve zero voltage switching status and force the system to hit the maximum transmission efficiency. Then frequency tracking control(FTC) is used to obtain the highest system efficiency. In the paper, the designed system is rated at 500 W with 15 cm air-gap, the overall efficiency is 92%. At the end, the paper also gives the consideration on how to improve the system efficiency. 展开更多
关键词 wireless power transfer(WPT) zero voltage switching frequency tracking control(FTC) electric vehicle/plug-in hybrid electric vehicle(EV/phev)
下载PDF
Vehicle-to-grid power system services with electric and plug - in vehicles based on flexibility in unidirectional charging 被引量:1
12
作者 Philip T.Krein Mcdavis A.Fasugba 《CES Transactions on Electrical Machines and Systems》 2017年第1期26-36,共11页
With proper power scheduling and dynamic pricing,a unidirectional charger can provide benefits and regulation services to the electricity grid,at a level approaching that of bidirectional charging.Power scheduling and... With proper power scheduling and dynamic pricing,a unidirectional charger can provide benefits and regulation services to the electricity grid,at a level approaching that of bidirectional charging.Power scheduling and schedule flexibility of electric and plug-in hybrid vehicles are addressed.The use of electric vehicles(EVs)as flexibility resources and associated unidirectional vehicle-to-grid benefits are investigated.Power can be scheduled with the EV charger in control of charging or via control by a utility or an aggregator.Charging cost functions suitable for charger-and utility-controlled power scheduling are presented.Ancillary service levels possible with unidirectional vehicle-to-grid are quantified using sample charging scenarios from published data.Impacts of various power schedules and vehicle participation as a flexibility resource on electricity locational prices are evaluated.These include benefits to both owners and load-serving entities.Frequency regulation is considered in the context of unidirectional charging. 展开更多
关键词 Demand response electric vehicles plug-in hybrids unidirectional battery charging utility dynamic price control vehicle-to-grid.
下载PDF
A multivariable output neural network approach for simulation of plug-in hybrid electric vehicle fuel consumption 被引量:2
13
作者 Bukola Peter Adedeji 《Green Energy and Intelligent Transportation》 2023年第2期66-84,共19页
This study is laser focused on the simulation of fuel consumption and fuel economy label parameters of plug-in hybrid electric vehicles.While fuel economy is a key factor in the design of plug-in hybrid electric vehic... This study is laser focused on the simulation of fuel consumption and fuel economy label parameters of plug-in hybrid electric vehicles.While fuel economy is a key factor in the design of plug-in hybrid electric vehicles,a fuel economy label can educate customers about the economic advantage of purchasing a particular car.The fuel economy label of a PHEV consists of parameters like driving range,electrical energy consumption,fuel economy for city,highway,and combined use,battery recharge time,and fuel consumption rates.The study used an inverse function model of an artificial neural network to simulate and calculate the parameters of the fuel economy labels of PHEVs.Firstly,the selected parameters of the fuel economy label of plug-in hybrid electric vehicles were used to develop a single output model.The output variable of the single output model was then merged with dummy functions to form input variables for the inverse function model.The output variables simulated were engine size in litres;estimated driving range when the battery is fully charged in km,battery recharged time in hours,city fuel consumption(L/100 km),highway fuel consumption(L/100 km),combined fuel consumption(L/100 km),estimated driving range when the tank is full,carbon dioxide(CO_(2))emission in grams/km,electric motor power in kW,number of cylinders,and electrical charges consumed in kWh/100 km.Different cases of input variables were considered for the inverse function model.The accuracy of the model was 29.1 times greater than that of the conventional inverse artificial neural network model. 展开更多
关键词 plug-in hybrid electric vehicles Fuel economy Fuel economy label Artificial neural network SIMULATION
原文传递
基于规划路径能耗预测的PHEV全局自适应能量管理
14
作者 何华强 张俊 +3 位作者 王宁 李玉芳 王伟平 王宇航 《南京航空航天大学学报》 CAS CSCD 北大核心 2024年第5期884-891,共8页
新能源汽车智能化能量管理是先进汽车技术研究的重要领域,是进一步提升整车燃油经济性能的关键。针对插电式混合动力汽车(Plug-in hybrid electric vehicle,PHEV)能量全局化管理与控制的实时性和最优性难以兼顾的难题,开展了基于能耗预... 新能源汽车智能化能量管理是先进汽车技术研究的重要领域,是进一步提升整车燃油经济性能的关键。针对插电式混合动力汽车(Plug-in hybrid electric vehicle,PHEV)能量全局化管理与控制的实时性和最优性难以兼顾的难题,开展了基于能耗预测的全路径自适应能量管理研究,提出了以等效燃油消耗最小化为目标的全规划路径PHEV自适应控制算法。最后,基于MATLAB/Simulink的建模与仿真分析验证了所提控制算法对实际行驶工况、里程和整车能量状态的变化具有较好的跟随性和自适应性,全路径近似全局性优化控制效果明显,较好地改善了整车的燃油经济性。 展开更多
关键词 插电式混合动力汽车 规划路径 能耗预测 全局自适应能量管理 燃油经济性
下载PDF
Plug-In Vehicle Acceptance and Probable Utilization Behaviour
15
作者 Patrícia Baptista Catarina Rolim Carla Silva 《Journal of Transportation Technologies》 2012年第1期67-74,共8页
This paper presents a study undertaken to understand the plug-in vehicle acceptance and probable utilization behaviour in terms of charging habits and utility factor (probability of driving in electrical mode). A surv... This paper presents a study undertaken to understand the plug-in vehicle acceptance and probable utilization behaviour in terms of charging habits and utility factor (probability of driving in electrical mode). A survey was designed to be answered via World Wide Web, throughout 3 months and only accessible to Portuguese inhabitants. The survey was composed by biographical and car ownership info, mobility patterns, awareness toward plug-in vehicle technologies, price premium and, finally, potential buyer’s attitudes regarding charging vehicles with electricity from the grid. An explanation of how each vehicle technology works in the case of a regular hybrid (HEV), a plug-in hybrid (PHEV) and a pure electric vehicle (EV) was provided. A total sample of 809 volunteers answered the survey, aged above 18 years old, 50% male and 50% female. The results allowed the estimation of the typical daily driving distance, the Utility Factor curve for plug-in hybrid future users, the charging preferences for future users of pure electric or plug-in hybrid vehicles and the necessary feebates to promote the market penetration of such technologies. Other correlations were also analyzed between driving patterns, type of owned car, price premium and the willingness to buy pure electric and plug-in hybrid vehicles. The main policy implications are that an increase of awareness campaigns is necessary if the government intends to support the plug-in electric vehicle technology widespread and a minimum of 5000 € investment per ton of avoided CO2 will be necessary in a year. 展开更多
关键词 PURE electric vehicleS plug-in hybrid vehicleS UTILITY Factor Frequency Period of Recharging
下载PDF
Global Optimization‑Based Energy Management Strategy for Series–Parallel Hybrid Electric Vehicles Using Multi‑objective Optimization Algorithm 被引量:2
16
作者 Kegang Zhao Kunyang He +1 位作者 Zhihao Liang Maoyu Mai 《Automotive Innovation》 EI CSCD 2023年第3期492-507,共16页
The study of series–parallel plug-in hybrid electric vehicles(PHEVs)has become a research hotspot in new energy vehicles.The global optimal Pareto solutions of energy management strategy(EMS)play a crucial role in th... The study of series–parallel plug-in hybrid electric vehicles(PHEVs)has become a research hotspot in new energy vehicles.The global optimal Pareto solutions of energy management strategy(EMS)play a crucial role in the development of PHEVs.This paper presents a multi-objective global optimization algorithm for the EMS of PHEVs.The algorithm combines the Radau Pseudospectral Knotting Method(RPKM)and the Nondominated Sorting Genetic Algorithm(NSGA)-II to optimize both energy conservation and battery lifespan under the suburban driving conditions of the New European Driving Cycle.The driving conditions are divided into stages at evident mode switching points and the optimal objectives are computed using RPKM.The RPKM results serve as the fitness values in iteration through the NSGA-II method.The results of the algorithm applied to a PHEV simulation show a 26.74%–53.87%improvement in both objectives after 20 iterations compared to the solutions obtained using only RPKM.The proposed algorithm is evaluated against the weighting dynamic programming and is found to be close to the global optimality,with the added benefits of faster and more uniform solutions. 展开更多
关键词 plug-in hybrid electric vehicles Energy management strategy Multi-objective optimization Global optimization NSGA-II Radau pseudospectral knotting method
原文传递
基于实时交通信息的PHEV模型预测控制策略研究 被引量:2
17
作者 张冰战 朱昊 +2 位作者 康谷峰 李开放 朱茂飞 《汽车技术》 CSCD 北大核心 2023年第9期1-8,共8页
为提升插电式混合动力汽车(PHEV)的燃油经济性,提出了一种基于实时交通信息的车速预测方法,并以燃油经济性最优为目标,借助动态规划(DP)算法在预测时域内进行实时最优转矩分配,建立基于模型预测控制(MPC)的整车能量管理策略。MATLAB/Sim... 为提升插电式混合动力汽车(PHEV)的燃油经济性,提出了一种基于实时交通信息的车速预测方法,并以燃油经济性最优为目标,借助动态规划(DP)算法在预测时域内进行实时最优转矩分配,建立基于模型预测控制(MPC)的整车能量管理策略。MATLAB/Simulink仿真平台验证结果表明:与传统车速预测方法相比,基于实时交通信息的车速预测方法的车速预测精确度提高了13.5%;与基于历史车速的模型预测控制策略相比,基于实时交通信息的模型预测控制策略使整车燃油经济性提高了9.5%。 展开更多
关键词 插电式混合动力汽车 实时交通信息 车速预测 能量管理策略 模型预测控制
下载PDF
基于深度强化学习的THS-Ⅲ平台PHEV能量管理策略研究
18
作者 张小俊 沈亮屹 +2 位作者 唐鹏 史延雷 李彦辰 《汽车技术》 CSCD 北大核心 2023年第4期16-23,共8页
针对THS-Ⅲ平台的插电式混合动力汽车提出一种基于深度强化学习的能量管理策略。首先,使用MATLAB/Simulink搭建车辆前向仿真模型;其次,建立车辆能量管理的马尔可夫过程和深度强化学习算法;最后,使用WLTC-Class3和ACC-60工况进行了仿真... 针对THS-Ⅲ平台的插电式混合动力汽车提出一种基于深度强化学习的能量管理策略。首先,使用MATLAB/Simulink搭建车辆前向仿真模型;其次,建立车辆能量管理的马尔可夫过程和深度强化学习算法;最后,使用WLTC-Class3和ACC-60工况进行了仿真验证。结果表明,与基于规则的能量管理策略相比,基于深度强化学习的能量管理策略在WLTC-Class3工况下总花费节省16.51%,燃油消耗量下降15.56%,在ACC-60工况下总花费节省31.95%,燃油消耗量下降29.96%。 展开更多
关键词 深度强化学习 插电式混合动力汽车 能量管理 层归一化 自适应巡航
下载PDF
Microgrid economic operation considering plug-in hybrid electric vehicles integration 被引量:9
19
作者 Changsong CHEN Shanxu DUAN 《Journal of Modern Power Systems and Clean Energy》 SCIE EI 2015年第2期221-231,共11页
In this paper,the microgrid economic scheduling mathematical model considering the integration of plug-in hybrid electric vehicles(PHEVs)is presented and the influence of different charging and discharging modes on mi... In this paper,the microgrid economic scheduling mathematical model considering the integration of plug-in hybrid electric vehicles(PHEVs)is presented and the influence of different charging and discharging modes on microgrid economic operation is analyzed.The generic algorithm is used to find an economically optimal solution for the microgrid and PHEV owners.The scheduling of PHEVs and the microgrid are optimized to reduce daily electricity cost and the potential benefits of controlled charging/discharging are explored systematically.Constraints caused by vehicle utilization as well as technical limitations of distributed generation and energy storage system are taken into account.The proposed economic scheduling is evaluated through a simulation by using a typical grid-connected microgrid model. 展开更多
关键词 plug-in hybrid electric vehicle(phev) Economic scheduling Smart charging and discharging Microgrid(MG)
原文传递
Powertrain design and energy management of a novel coaxial series-parallel plug-in hybrid electric vehicle 被引量:7
20
作者 ZHANG LiPeng QI BingNan +2 位作者 ZHANG RunSheng LIU JingChao WANG LiQiang 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2016年第4期618-630,共13页
For a series plug-in hybrid electric vehicle,higher working efficiency can be achieved by the drive system with two small motors in parallel than that with one big motor alone.However,the overly complex structure will... For a series plug-in hybrid electric vehicle,higher working efficiency can be achieved by the drive system with two small motors in parallel than that with one big motor alone.However,the overly complex structure will inevitably lead to a substantial increase in the development cost.To improve the system price-performance ratio,a new kind of series-parallel hybrid system evolved from the series plug-in hybrid system is designed.According to the technical parameters of the selected components,the system model is established,and the vehicle dynamic property and pure electric drive economy are evaluated.Based on the dynamic programming,the energy management strategy for the drive system under the city driving cycle is developed,and the superiority validation of the system is completed.For the studied vehicle driven by the designed series-parallel plug-in hybrid system,compared with the one driven by the described series plug-in hybrid system,the dynamic property is significantly improved because of the multi-power coupling,and the fuel consumption is reduced by 11.4%with 10 city driving cycles.In a word,with the flexible configuration of the designed hybrid system and the optimized control strategy of the energy management,the vehicle performance can be obviously improved. 展开更多
关键词 plug-in hybrid electric vehicle series-parallel hybrid system multi-power coupling dynamic programming energymanagement
原文传递
上一页 1 2 6 下一页 到第
使用帮助 返回顶部